Abstract

Optical sensing is a very important method for investigating different kinds of samples. Recently, we proposed a new kind of optical sensor based on random lasing [ Sci. Rep. 6, 35225 (2016)], that couples the advantages of stimulated emission in detecting small variations on scattering properties of a sensed material, to the needs of no alteration of the sample under investigation. Here, we present a method to achieve a quantitative measurement of the scattering properties of a material. The results on samples of calibrated microspheres show a dependence of the peak intensity of the emission spectrum on the transport mean free path of the light within the sample, whatever the dimension (down to ≈100 nm of particle diameter) and the concentration of scatterers dispersed in the sensed material. A direct and fast measurement of the scattering properties is obtained by calibration with a well-known and inexpensive reference medium.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffusive random laser modes under a spatiotemporal scope

Sara García-Revilla, Joaquín Fernández, Macarena Barredo-Zuriarrain, Luís D. Carlos, Edison Pecoraro, Ignacio Iparraguirre, Jon Azkargorta, and Rolindes Balda
Opt. Express 23(2) 1456-1469 (2015)

Ultrafast random laser emission in a dye-doped silica gel powder

Sara García-Revilla, Joaquín Fernández, Maria Asunción Illarramendi, Begoña García-Ramiro, Rolindes Balda, Hongtao Cui, Marcos Zayat, and David Levy
Opt. Express 16(16) 12251-12263 (2008)

Random laser properties of Nd3+ crystal powders

J. Azkargorta, I. Iparraguirre, J. Fernández, R. Balda, S. García-Revilla, and M. Barredo-Zurriarrain
Opt. Express 26(9) 11787-11803 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
    [Crossref] [PubMed]
  2. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [Crossref]
  3. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37 (2013).
    [Crossref] [PubMed]
  4. E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
    [Crossref] [PubMed]
  5. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).
  6. B. Chance, ed. Photon Migration in Tissues (Plenum Press), 1989).
  7. A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
    [Crossref] [PubMed]
  8. F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
    [Crossref] [PubMed]
  9. M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive determination of tissue optical properties,” Appl. Opt. 28, 2231–2336 (1989).
    [Crossref]
  10. H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in intralipid-10% in the wavelength eange of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [Crossref] [PubMed]
  11. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
    [Crossref] [PubMed]
  12. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  13. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19(23), 1934–1936 (1994).
    [Crossref] [PubMed]
  14. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
    [Crossref] [PubMed]
  15. S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
    [Crossref]
  16. L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
    [Crossref]
  17. M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
    [Crossref] [PubMed]
  18. M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
    [Crossref] [PubMed]
  19. V. S. Letokhov, “Generation of light by scattering medium with negative resonance absorption,” Eksp. Teor. Fiz. 53, 1442 (1967).
  20. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359 (2008).
    [Crossref]
  21. H. Cao, “Random lasers: Development, features and applications,” Opt. Photonics News 16, 24–29 (2005).
    [Crossref]
  22. S. H. Choi and Y. L. Kim, “The potential of naturally occurring lasing for biological and chemical sensors,” Biomed. Eng. Lett. 4(3), 201–212 (2014).
    [Crossref]
  23. M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
    [Crossref]
  24. Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
    [Crossref] [PubMed]
  25. M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
    [Crossref]
  26. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  27. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
    [Crossref] [PubMed]
  28. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
    [Crossref]
  29. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
    [Crossref]
  30. R. Uppu, A. K. Tiwari, and S. Mujumdar, “Identification of statistical regimes and crossovers in coherent random laser emission,” Opt. Lett. 37(4), 662 (2012).
    [Crossref] [PubMed]
  31. E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
    [Crossref]
  32. F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
    [Crossref]
  33. M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
    [Crossref]
  34. L. Wang, D. Liu, N. He, and S. L. Jacques, “Biological laser action,” Appl. Opt. 35(10), 1775–1779 (1996).
    [Crossref] [PubMed]
  35. R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
    [Crossref]
  36. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35(9), 1425–1427 (2010).
    [Crossref] [PubMed]
  37. D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
    [Crossref]
  38. C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
    [Crossref] [PubMed]
  39. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289 (2004).
    [Crossref]
  40. Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
    [Crossref]
  41. F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
    [Crossref]
  42. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  43. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [Crossref] [PubMed]
  44. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
    [Crossref]
  45. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. cw method,” Opt. Express 15(2), 486–500 (2007).
    [Crossref] [PubMed]
  46. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
    [Crossref] [PubMed]
  47. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
    [Crossref] [PubMed]
  48. B. Aernouts, E. Zamora-Rojas, R. V. Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of intralipid phantoms in the 500–2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
    [Crossref]
  49. C. F. Bohren and D. Huffman, Absorption and scattering of light by small particles, Wiley science paperback series (Wiley, 1983).

2017 (3)

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
[Crossref] [PubMed]

2016 (1)

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

2015 (5)

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref] [PubMed]

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

2014 (3)

2013 (4)

B. Aernouts, E. Zamora-Rojas, R. V. Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of intralipid phantoms in the 500–2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37 (2013).
[Crossref] [PubMed]

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

2012 (3)

2011 (1)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

2010 (2)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35(9), 1425–1427 (2010).
[Crossref] [PubMed]

2008 (3)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
[Crossref] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359 (2008).
[Crossref]

2007 (2)

2005 (2)

H. Cao, “Random lasers: Development, features and applications,” Opt. Photonics News 16, 24–29 (2005).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289 (2004).
[Crossref]

2003 (1)

2000 (1)

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

1996 (3)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

L. Wang, D. Liu, N. He, and S. L. Jacques, “Biological laser action,” Appl. Opt. 35(10), 1775–1779 (1996).
[Crossref] [PubMed]

1995 (4)

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

1994 (2)

1991 (2)

1989 (1)

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive determination of tissue optical properties,” Appl. Opt. 28, 2231–2336 (1989).
[Crossref]

1967 (1)

V. S. Letokhov, “Generation of light by scattering medium with negative resonance absorption,” Eksp. Teor. Fiz. 53, 1442 (1967).

Aernouts, B.

Akkus, O.

Alfano, R.

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

Anderson, E. R.

Andersson-Engels, S.

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Azzali, N.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

Bao, X.

Barbieri, B.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[Crossref] [PubMed]

Baribeau, F.

Barilli, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

Beers, R. V.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Binzoni, T.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

Bodnar, O.

Bohren, C. F.

C. F. Bohren and D. Huffman, Absorption and scattering of light by small particles, Wiley science paperback series (Wiley, 1983).

Boto, A.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Botwicz, M.

Bouchard, J.-P.

Bressel, L.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
[Crossref]

Caixeiro, S.

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Campbell, E. C.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Cao, H.

H. Cao, “Random lasers: Development, features and applications,” Opt. Photonics News 16, 24–29 (2005).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Caulfield, H.

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

Cavalieri, S.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Chance, B.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive determination of tissue optical properties,” Appl. Opt. 28, 2231–2336 (1989).
[Crossref]

Chang, R. P. H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chang, S.-H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Chang, T.

C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Chen, Y.-F.

C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Choi, S. H.

S. H. Choi and Y. L. Kim, “The potential of naturally occurring lasing for biological and chemical sensors,” Biomed. Eng. Lett. 4(3), 201–212 (2014).
[Crossref]

Cubeddu, R.

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Del Bianco, S.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).

Di Ninni, P.

Dìaz, M.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Drachev, V.

Duan, Z.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Durduran, T.

Elster, C.

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Fantini, S.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[Crossref] [PubMed]

Farina, A.

Ferrari, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

Fini, L.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Fishkin, J. B.

Foschum, F.

Franceschini, M. A.

Franceschini-Fantini, M.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

Gaio, M.

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Gallant, P.

Gao, S.

Gather, M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

Gratton, E.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[Crossref] [PubMed]

Haskell, R. C.

Hass, R.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
[Crossref]

He, N.

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Ho, H.-C.

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and scattering of light by small particles, Wiley science paperback series (Wiley, 1983).

Humar, M.

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref] [PubMed]

Ignesti, E.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37 (2013).
[Crossref] [PubMed]

L. Wang, D. Liu, N. He, and S. L. Jacques, “Biological laser action,” Appl. Opt. 35(10), 1775–1779 (1996).
[Crossref] [PubMed]

Jelzow, A.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

Kacprzak, M.

Karl, M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Karnutsch, C.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Khoptyar, D.

Kienle, A.

Kim, Y. L.

S. H. Choi and Y. L. Kim, “The potential of naturally occurring lasing for biological and chemical sensors,” Biomed. Eng. Lett. 4(3), 201–212 (2014).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35(9), 1425–1427 (2010).
[Crossref] [PubMed]

Klauenberg, K.

Kostovski, G.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Kronenberg, N. M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Lagendijk, A.

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Lahoz, F.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Lammertyn, J.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

Leclair, S.

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Lepri, S.

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Lesage, F.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by scattering medium with negative resonance absorption,” Eksp. Teor. Fiz. 53, 1442 (1967).

Liebert, A.

Liehm, P.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Lin, T.-Y.

C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Liu, D.

Liu, J.

Liu, X.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Lu, P.

Macdonald, R.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

Madsen, S. J.

Maier, J.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

Marelli, B.

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Marìn, R.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Marrero-Alonso, J.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Martelli, F.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. cw method,” Opt. Express 15(2), 486–500 (2007).
[Crossref] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).

Martìn, I. R.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Mazurenka, M.

Mercatelli, L.

Mermut, O.

Michels, R.

Mihailov, S.

Milej, D.

Mitchell, A.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Moes, C.

Moes, C. J. M.

Mujumdar, S.

Noginov, M.

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

Noginova, N.

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

Noiseux, I.

Omenetto, F. G.

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Patterson, M.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive determination of tissue optical properties,” Appl. Opt. 28, 2231–2336 (1989).
[Crossref]

Pifferi, A.

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289 (2004).
[Crossref]

Powis, S. J.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Prahl, S.

Prahl, S. A.

Qiu, Z.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Radhalakshmi, V.

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Reich, O.

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
[Crossref]

Saavedra, C. J.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Saeys, W.

Sani, E.

Sapienza, R.

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Sawosz, P.

Schubert, M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Seelig, E. W.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Shalaev, V. M.

Siddique, M.

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

Song, Q.

Spinelli, L.

Steude, A.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Subash, A. A.

Sun, X.

Suvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

Taddeucci, A.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

Tiwari, A. K.

Tommasi, F.

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

Torricelli, A.

Tromberg, B. J.

Tsuta, M.

Uppu, R.

Urgellís, M.

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

van Gemert, M.

van Gemert, M. J. C.

van Marie, J.

van Marle, J.

van Staveren, H.

van Staveren, H. J.

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289 (2004).
[Crossref]

Venkateswarlu, P.

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

Wabnitz, H.

Waibnitz, H.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

Walker, S.

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

Wang, C.-S.

C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Wang, L.

Wang, Q.

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Wang, Y.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Watté, R.

Weigel, U.

Wiersma, D. S.

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359 (2008).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Wilson, B.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive determination of tissue optical properties,” Appl. Opt. 28, 2231–2336 (1989).
[Crossref]

Wu, J.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Xiang, T.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Xiao, S.

Xu, J. Y.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Xu, Y.

Xu, Z.

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Yang, L.

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Yun, S. H.

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref] [PubMed]

Zaccanti, G.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at nir wavelengths. cw method,” Opt. Express 15(2), 486–500 (2007).
[Crossref] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).

Zamora-Rojas, E.

Zhang, D.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Zhang, L.

Zhang, P.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zolek, N.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289 (2004).
[Crossref]

Biomed. Eng. Lett. (1)

S. H. Choi and Y. L. Kim, “The potential of naturally occurring lasing for biological and chemical sensors,” Biomed. Eng. Lett. 4(3), 201–212 (2014).
[Crossref]

Biomed. Opt. Express (1)

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref]

Eksp. Teor. Fiz. (1)

V. S. Letokhov, “Generation of light by scattering medium with negative resonance absorption,” Eksp. Teor. Fiz. 53, 1442 (1967).

J. Biomed. Opt. (2)

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1(1), 117–123 (1996).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Waibnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20, 115001 (2015).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. Bressel, R. Hass, and O. Reich, “Particle sizing in highly turbid dispersions by photon density wave spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 126, 122–129 (2013).
[Crossref]

Laser Phys. Lett. (1)

F. Lahoz, I. R. Martìn, M. Urgellís, J. Marrero-Alonso, R. Marìn, C. J. Saavedra, A. Boto, and M. Dìaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Nano Lett. (1)

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. Gather, “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359 (2008).
[Crossref]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Suvain, “Laser action in strongly scattering media,” Nature 368, 436 (1995).
[Crossref]

Opt. Commun. (2)

M. Noginov, H. Caulfield, N. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430 (1995).
[Crossref]

M. Siddique, L. Yang, Q. Wang, and R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117(5), 475–479 (1995).
[Crossref]

Opt. Eng. (1)

S. Fantini, M. Franceschini-Fantini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Photonics News (1)

H. Cao, “Random lasers: Development, features and applications,” Opt. Photonics News 16, 24–29 (2005).
[Crossref]

Org. Electron. (1)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Phys. Med. Biol. (2)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37 (2013).
[Crossref] [PubMed]

Phys. Rev. A (2)

E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. S. Wiersma, and S. Cavalieri, “Experimental and theoretical investigation of statistical regimes in random laser emission,” Phys. Rev. A 88, 033820 (2013).
[Crossref]

F. Tommasi, E. Ignesti, L. Fini, and S. Cavalieri, “Controlling directionality and the statistical regime of the random laser emission,” Phys. Rev. A 91, 033820 (2015).
[Crossref]

Phys. Rev. Appl. (1)

M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,” Phys. Rev. Appl. 7, 034005 (2017).
[Crossref]

Phys. Rev. B (1)

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Phys. Rev. Lett. (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, “A new class of optical sensors: a random laser based device,” Sci. Rep. 6, 35225 (2016).
[Crossref] [PubMed]

C.-S. Wang, T. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “A new class of optical sensors: a random laser based devicerandom lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Rep. 7, 8385 (2017).
[Crossref]

Other (3)

C. F. Bohren and D. Huffman, Absorption and scattering of light by small particles, Wiley science paperback series (Wiley, 1983).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media (SPIE Press/Bellingham, Whashington (USA), 2009).

B. Chance, ed. Photon Migration in Tissues (Plenum Press), 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A latex spheres sample provided by Magsphere Inc. at electron microscope.
Fig. 2
Fig. 2 Scheme of the sensor structure. The optical fiber carries both the pump beam (green) and the signal (red). The light emitted by the dye molecules passes through the transparent walls and scatters within the external medium. The external particles are not in scale.
Fig. 3
Fig. 3 Scheme of experimental set-up: MP movable polarizer, FP fixed polarizer, SE semi-transparent plate, EM energy meter, DM dichroic mirror, M mirror, L lens, SP spectrometer.
Fig. 4
Fig. 4 Examples of signal spectra from a sample (μ′s = 2.33 mm−1) composed by a water dispersion of polystyrene particles of 190 nm diameter. The pump pulse has three different energies.
Fig. 5
Fig. 5 Peak intensity of the signal spectrum for a dilution of Intralipid 20% (blue) and a dispersion of particle of 190 nm diameter (red) (Sigma-Aldrich) as a function of pump energy. Both samples have μ′s = 2.33 mm−1. The dashed line is the linear fit of the five larger values for the signal of Intralipid 20% and a threshold value around 0.3 mJ.
Fig. 6
Fig. 6 Peak intensity of the signal spectrum (normalized to the water value) for different particle size (Sigma-Aldrich) at different pump energies: 0.19 mJ (blue triangles), 0.39 mJ (green rhombus), 0.65 mJ (red squares) and 0.89 mJ (black circles). The continuous and dashed lines respectively show the correspondent mean value and standard deviation of the measurement with Intralipid 20% at the same μ′s and pump energies. Within the precision of the measurement, the peak intensity is constant for a fixed pump energy. The Intralipid 20% lines are reported down to the diameter of ≈100 nm, below which the microspheres signals are no longer consistent with the reference medium.
Fig. 7
Fig. 7 The energy of the signal (normalized to the water value) for different particle size (Sigma-Aldrich) at different pump energies: 0.19 mJ (blue triangles), 0.39 mJ (green rhombus), 0.65 mJ (red squares) and 0.89 mJ (black circles). The continuous and dashed line respectively show the correspondent mean value and uncertain (80% of its standard deviation, for sake of clarity) of Intralipid 20% at the same the measurement with μ′s and pump energies. The Intralipid 20% lines are reported down to the diameter of ≈250 nm, below which the microspheres signals are no longer consistent with the reference medium.
Fig. 8
Fig. 8 Peak intensity of the signal (normalized to the water value) for different particle size (Magsphere Inc.) at the pump energy: 1.39 mJ. The continuous and dashed gray line respectively show the correspondent mean value and standard deviation of the measurement with Intralipid 20% at the same μ′s and pump energy. The Intralipid 20% lines are reported down to the diameter of ≈100 nm, below which the microspheres signals are no longer consistent with the reference medium.
Fig. 9
Fig. 9 The energy of the signal (normalized to the water value) for different particle size (Magsphere Inc.) at the pump energy: 1.39 mJ. The continuous and dashed gray line respectively show the correspondent mean value and standard deviation of the measurement with Intralipid 20% at the same μ′s and pump energy. The Intralipid 20% lines are reported down to the diameter of ≈250 nm, below which the microspheres signals are no longer consistent with the reference medium.

Tables (1)

Tables Icon

Table 1 Data of the samples with calibrated spheres. For all the samples, the particles concentration is set to achieve the same μ′s = 2.33 mm−1. The scattering coefficient μs is also reported.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μ s = 3 4 ρ v Q ( 1 g ) r
f ( r ) = 1 r S 2 π exp [ 1 2 ( ln r m S 2 ) 2 ]
m = ln ( r ¯ 2 σ 2 + r ¯ 2 )
S = ln ( σ 2 r ¯ 2 + 1 )
Q ( λ ) = 0 d r f ( r ) Q ( r , λ )
g ( λ ) = 0 d r f ( r ) g ( r , λ )

Metrics