Abstract

In this work we introduce a tunable GMR filter based on continuously period-chirped (ΔP = 130 nm) gratings using a Ta2O5 waveguide layer with graded thickness (ΔT = 36 nm). The structure of the gradient-period grating is defined using a modified Lloyd’s mirror interferometer with a convex mirror, and Ta2O5 film used for the gradient is deposited using masked e-beam evaporation. The as-realized chirped GMR filter provides sharp transmission dips at resonant wavelengths with a filter bandwidth of approximately 4.2 nm and 0.78 nm when respectively applied to TE and TM polarized light under normal incidence. Gradually sweeping the chirped GMR filter makes it possible to monotonically sweep through resonant wavelengths from 500 to 700 nm, while maintaining stable filter bandwidth and transmission intensity. The optical spectrum of the incoming light can then be loyally reconstructed accordingly. We successfully demonstrate the spectrum reconstruction of a white light emitting diode and a dual-peak laser beam using the proposed chirped GMR filter as a dispersive device.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror

Hanbit Kim, Hyunho Jung, Dong-Hyun Lee, Kyu Back Lee, and Heonsu Jeon
Appl. Opt. 55(2) 354-359 (2016)

Flexible and stretchable guided-mode resonant optical sensor: single-step fabrication on a surface engineered polydimethylsiloxane substrate

Swagato Sarkar, Sruthy Poulose, Pankaj K. Sahoo, and Joby Joseph
OSA Continuum 1(4) 1277-1286 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [Crossref]
  2. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
    [Crossref]
  3. N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
    [Crossref]
  4. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
    [Crossref]
  5. X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
    [Crossref]
  6. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
    [Crossref]
  7. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
    [Crossref] [PubMed]
  8. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
    [Crossref]
  9. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [Crossref] [PubMed]
  10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  11. Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5(3), 289–294 (2018).
    [Crossref]
  12. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  13. S. Foland, K.-H. Choi, and J.-B. Lee, “Pressure-tunable guided-mode resonance sensor for single-wavelength characterization,” Opt. Lett. 35(23), 3871–3873 (2010).
    [Crossref] [PubMed]
  14. G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
    [Crossref] [PubMed]
  15. C.-T. Wang, H.-H. Hou, P.-C. Chang, C.-C. Li, H.-C. Jau, Y.-J. Hung, and T.-H. Lin, “Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating,” Opt. Express 24(20), 22892–22898 (2016).
    [Crossref] [PubMed]
  16. H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28, 1042–1045 (2016).
    [Crossref]
  17. G. J. Triggs, Y. Wang, C. P. Reardon, M. Fischer, G. J. O. Evans, and T. F. Krauss, “Chirped guided-mode resonance biosensor,” Optica 4(2), 229–234 (2017).
    [Crossref]
  18. H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
    [Crossref]
  19. E. Li, X. Chong, F. Ren, and A. X. Wang, “Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array,” Opt. Lett. 41(9), 1913–1916 (2016).
    [Crossref] [PubMed]
  20. C. Fang, B. Dai, Z. Li, A. Zahid, Q. Wang, B. Sheng, and D. Zhang, “Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge,” Opt. Lett. 41(22), 5302–5305 (2016).
    [Crossref] [PubMed]
  21. D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
    [Crossref]
  22. Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
    [Crossref]
  23. Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
    [Crossref]
  24. K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
    [Crossref] [PubMed]
  25. A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
    [Crossref]
  26. A. Suzuki and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films 72(3), 419–426 (1980).
    [Crossref]
  27. D. A. Bryan and J. K. Powers, “Improved holography for chirped gratings,” Opt. Lett. 5(9), 407–409 (1980).
    [Crossref] [PubMed]
  28. H. Kim, H. Jung, D.-H. Lee, K. B. Lee, and H. Jeon, “Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror,” Appl. Opt. 55(2), 354–359 (2016).
    [Crossref] [PubMed]
  29. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref] [PubMed]
  30. T. H. Yoon, C. I. Eom, M. S. Chung, and H. J. Kong, “Diffractometric methods for absolute measurement of diffraction-grating spacings,” Opt. Lett. 24(2), 107–109 (1999).
    [Crossref] [PubMed]
  31. V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
    [Crossref]
  32. A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
    [Crossref]

2018 (2)

Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5(3), 289–294 (2018).
[Crossref]

H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
[Crossref]

2017 (2)

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

G. J. Triggs, Y. Wang, C. P. Reardon, M. Fischer, G. J. O. Evans, and T. F. Krauss, “Chirped guided-mode resonance biosensor,” Optica 4(2), 229–234 (2017).
[Crossref]

2016 (6)

2015 (1)

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

2013 (2)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

2012 (1)

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref] [PubMed]

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

2010 (1)

2009 (2)

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

2008 (2)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref] [PubMed]

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

2007 (1)

2006 (1)

D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

2004 (3)

T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

1999 (1)

1994 (1)

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1980 (2)

A. Suzuki and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films 72(3), 419–426 (1980).
[Crossref]

D. A. Bryan and J. K. Powers, “Improved holography for chirped gratings,” Opt. Lett. 5(9), 407–409 (1980).
[Crossref] [PubMed]

1977 (1)

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Accard, A.

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

Adibi, A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Askari, M.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Baets, R.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

Balakrishnan, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Bodere, A.

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

Bogaerts, W.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

Bryan, D. A.

Carpentier, D.

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

Cartwright, A. N.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Chamanzar, M.

Chang, H.-J.

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Chang, P.-C.

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

C.-T. Wang, H.-H. Hou, P.-C. Chang, C.-C. Li, H.-C. Jau, Y.-J. Hung, and T.-H. Lin, “Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating,” Opt. Express 24(20), 22892–22898 (2016).
[Crossref] [PubMed]

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Cheben, P.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Chen, X.

Choi, K.-H.

Chong, X.

Chung, M. S.

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Cunningham, B. T.

D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

Dai, B.

Doobs, D. W.

D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Eftekhar, A. A.

Eom, C. I.

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Evans, G. J. O.

Fang, C.

Fernier, B.

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

Fischer, M.

Foland, S.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Gan, Q.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Gao, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Gershkovich, I.

D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

He, J.

X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Hens, Z.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

Hosseini, E. S.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Hou, H.-H.

Hsu, H.-Y.

H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
[Crossref]

Hu, H.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Huang, C.-S.

H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
[Crossref]

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28, 1042–1045 (2016).
[Crossref]

Hung, Y.-J.

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

C.-T. Wang, H.-H. Hou, P.-C. Chang, C.-C. Li, H.-C. Jau, Y.-J. Hung, and T.-H. Lin, “Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating,” Opt. Express 24(20), 22892–22898 (2016).
[Crossref] [PubMed]

Iho, A.

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

Janz, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Jau, H.-C.

Jeon, H.

Jin, C.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Jung, H.

Kao, T.-C.

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Katzir, A.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Kim, H.

Ko, Y. H.

Kodate, K.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

Komai, Y.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

Kong, H. J.

Korpelainen, V.

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

Krauss, T. F.

Krug, P. A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

Lan, Y.-H.

H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
[Crossref]

Lassila, A.

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

Lee, D.-H.

Lee, J.-B.

Lee, K. B.

Li, C.-C.

Li, E.

Li, K.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Li, M.

X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
[Crossref] [PubMed]

Li, Q.

Li, Z.

Lin, H.-A.

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28, 1042–1045 (2016).
[Crossref]

Lin, J.-J.

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Lin, T.-H.

Lin, Y.-N.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Liu, K.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Liu, M.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Livanos, A. C.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Lu, W.

Ma, X.

X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Magnusson, R.

Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5(3), 289–294 (2018).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Momeni, B.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Powers, J. K.

Reardon, C. P.

Ren, F.

Seppa, J.

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

Shellan, J. B.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Shen, Y.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Sheng, B.

Shokooh-Saremi, M.

Soltani, M.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Suzuki, A.

A. Suzuki and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films 72(3), 419–426 (1980).
[Crossref]

Tada, K.

A. Suzuki and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films 72(3), 419–426 (1980).
[Crossref]

Triggs, G. J.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Wang, A. X.

Wang, C.-T.

Wang, H.

Wang, Q.

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wang, S.-W.

Wang, Y.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

Xia, C.

Xia, Z.

Xiao, G.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Xu, H.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Yariv, A.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Yebo, N. A.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

Yegnanarayanan, S.

Yoon, T. H.

Zahid, A.

Zhang, D.

Zhang, T.

Zheng, W.

Zhu, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Zhuang, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. W. Doobs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Appl. Phys. Lett. 89(12), 123113 (2006).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

IEEE Photonics J. (2)

H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A gradient grating period guided-mode resonance spectrometer,” IEEE Photonics J. 10(1), 4500109 (2018).
[Crossref]

X. Ma, M. Li, and J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (4)

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photonics Technol. Lett. 23(20), 1505–1507 (2011).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, K. Dossou, L. Erickson, M. Gao, and P. A. Krug, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16(2), 503–505 (2004).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28, 1042–1045 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

J. Vac. Sci. Technol. B (2)

Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, “Employing refractive beam shaping in a Lloyd’s interference lithography system for uniform periodic nanostructure formation,” J. Vac. Sci. Technol. B 35(3), 030601 (2017).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Mater. Sci. Eng. B (1)

A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28(1-3), 293–295 (1994).
[Crossref]

Meas. Sci. Technol. (1)

V. Korpelainen, A. Iho, J. Seppa, and A. Lassila, “High accuracy laser diffractometer: angle-scale traceability by the error separation method with a grating,” Meas. Sci. Technol. 20(8), 084020 (2009).
[Crossref]

Nanoscale (1)

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Optica (2)

Thin Solid Films (1)

A. Suzuki and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films 72(3), 419–426 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram showing continuously-chirped Ta2O5 guided mode resonance filter. Gradient variation in the grating period is crucial to creation of a compact high-resolution optical spectrometer.
Fig. 2
Fig. 2 (a,b) Simulated optical transmission spectra of continuously-chirped air-cladded Ta2O5 based GMR filter under normal incidence TE- and TM-polarized light, respectively. (c,d) Simulated optical transmission spectra of chirped GMR filter filled with refractive index liquid for TE polarization, as well as a Ta2O5 waveguide layer with (c) fixed and (d) graded thicknesses.
Fig. 3
Fig. 3 (a) Schematic illustration of one-beam Lloyd’s laser interferometer equipped with a convex mirror. Physical parameters x0, x1, y0, y1, and R are graphically defined in the figure. (b) Chirped grating periods as a function of interference position y calculated for convex Lloyd’s mirrors with three different curvature radii: R = 193, 500, and 1000 mm.
Fig. 4
Fig. 4 Schematic illustration of proposed LIL system used for chirped grating fabrication.
Fig. 5
Fig. 5 Grating period versus interference position using direct laser beams with various incident angles θ1. Solid lines indicate theoretical predictions, whereas hollow symbols indicate experimental data.
Fig. 6
Fig. 6 Mapping of (a) periodicity and (b) diffraction efficiency of chirped gratings over 2-inch wafer area using custom-made optical diffractometer.
Fig. 7
Fig. 7 Cross-sectional SEM views of chirped GMR filter in positions where grating period is (a) 277 nm and (b) 394 nm; (c) thickness trends of Ta2O5 waveguide layer in two as-fabricated chirped GMR filters (red rectangles indicate optimal thickness range for given grating period, based on RCWA simulations).
Fig. 8
Fig. 8 (a) Photograph of chirped GMR filter illuminated by white light source to reveal rainbow-colored diffraction image; (b) experiment setup used to characterize spectral resolution of chirped GMR filter.
Fig. 9
Fig. 9 Chirped GMR filter with a fixed waveguide layer: (a) Measured optical transmission spectra of chirped GMR filter and (b) corresponding transmission bandwidths and intensities along direction of interference for TE polarization (thickness of Ta2O5 waveguide layer fixed at 110 nm).
Fig. 10
Fig. 10 Chirped GMR filter with a graded waveguide layer: (a) Measured optical transmission spectra of chirped GMR filter and (b) corresponding transmission bandwidths and intensities along direction of interference for TE polarization (thickness of Ta2O5 waveguide layer 126~162 nm).
Fig. 11
Fig. 11 Measured optical transmission spectra of gradient-thickness chirped GMR filter under TE and TM polarized light at normal incidence. The GMR filter was filled with air (n = 1) or refractive index liquid (n = 1.8). The incident green and red laser beams had a spectral linewidth of less than 0.1 nm, which means that the transmission bandwidth of the measured transmission dips represents the ultimate spectral resolution of the gradient-thickness chirped GMR filter.
Fig. 12
Fig. 12 Measured optical spectra of (a) a 6.88-mW white light LED and (b) a laser beam combining from two different red laser sources (3.57-mW He-Ne laser and 3.74-mW diode laser) by a commercial optical spectrometer and the proposed optical spectrometer based on continuously-chirped GMR filter.

Tables (1)

Tables Icon

Table 1 Performances of state-of-the-art chirped GMR filters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ uv sin θ 1 +sin θ 2 = λ uv sin θ 1 +sin[ θ 1 +2 sin 1 ( x/R ) ]
φ=2 sin 1 ( x/R )
y( φ )=( Rsinφ+ x 0 + x 1 )tan( θ 1 +2φ ) y 1 y 0 y 1 =( x 0 + x 1 )tan θ 1 y 0 =R( 1cosφ )

Metrics