Abstract

We describe a single-channel 10.2 Tbit/s online transmission using non-coherent ultrashort optical Nyquist pulses. A 10.2 Tbit/s signal was generated at a symbol rate of as fast as 2.56 Tbaud with a polarization-multiplexed DQPSK format. We developed a new ultrafast optical sampler for Nyquist OTDM demultiplexing with a nonlinear optical loop mirror, an RZ-CW conversion technique to improve the SNR, and an active stabilization technique providing stable long-term demultiplexing operation. With precise higher-order dispersion compensation up to fourth order, a 10.2 Tbit/s signal was transmitted over 300 km for the first time as a real-time demonstration with a spectral efficiency of 2.5 bit/s/Hz. We also report a 10.2 Tbit/s transmission over 225 km with a spectral efficiency of 3.7 bit/s/Hz, which we realized by reducing the roll-off factor to zero.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km

Koudai Harako, Daiki Seya, Daiki Suzuki, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 23(24) 30801-30806 (2015)

Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz

Junpei Nitta, Masato Yoshida, Kosuke Kimura, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 25(13) 15199-15207 (2017)

Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz

Kosuke Kimura, Junpei Nitta, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(13) 17418-17428 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.
  2. K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.
  3. H. Yamazaki, A. Sano, M. Nagatani, and Y. Miyamoto, “Single-carrier 1-Tb/s PDM-16QAM transmission using high-speed InP MUX-DACs and an integrated OTDM modulator,” Opt. Express 23(10), 12866–12873 (2015).
    [Crossref] [PubMed]
  4. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [Crossref] [PubMed]
  5. T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at terabaud symbol rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
    [Crossref]
  6. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  7. K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
    [Crossref] [PubMed]
  8. D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express 24(26), 29682–29690 (2016).
    [Crossref] [PubMed]
  9. M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
    [Crossref] [PubMed]
  10. K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm,” IEICE Electron. Express 14(19), 20170829 (2017).
    [Crossref]
  11. C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.
  12. T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, “Second-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,” J. Lightwave Technol. 31(5), 809–814 (2013).
    [Crossref]

2018 (1)

2017 (1)

K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm,” IEICE Electron. Express 14(19), 20170829 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (1)

2012 (2)

2011 (1)

2010 (1)

Adamiecki, A.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Altenhain, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Boerner, C.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Buchali, F.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Chandrasekhar, S.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Chen, X.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Cho, J.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Clausen, A. T.

Dümler, U.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Dupuy, J.-Y.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Duval, B.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Engenhardt, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Eriksson, T. A.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Ferber, S.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Fontaine, N.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Galili, M.

Guan, P.

Harako, K.

Hirooka, T.

Hu, H.

Idler, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Jensen, J. B.

Jeppesen, P.

Jorge, F.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Kasai, K.

Kimura, K.

Konczykowska, A.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Ludwig, R.

T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at terabaud symbol rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
[Crossref]

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Marembert, V.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Miyamoto, Y.

Molle, L.

Möller, M.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Mulvad, H. C. H.

Nagatani, M.

Nakazawa, M.

Nitta, J.

Nölle, M.

Oxenløwe, L. K.

Palushani, E.

Peucheret, C.

Raybon, G.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Richter, T.

Riet, M.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Ruan, P.

Sano, A.

Schmalen, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Schmid, R.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Schmidt-Langhorst, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at terabaud symbol rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
[Crossref]

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Schubert, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at terabaud symbol rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
[Crossref]

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Schuh, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Suzuki, D.

Templ, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

Weber, H. G.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Winzer, P. J.

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

Yamazaki, H.

Yoshida, M.

IEICE Electron. Express (1)

K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm,” IEICE Electron. Express 14(19), 20170829 (2017).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (6)

Other (3)

G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P. J. Winzer, S. Chandrasekhar, and X. Chen, “180-Gbaud All-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km,” in Optical Fiber Communication Conference2018, paper Th.4.C.3.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tb/s transmission over 300 km with PM-64 QAM at 100 Gbaud,” in Optical Fiber Communication Conference2017, paper Th5.B.5.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Optical Fiber Communication Conference2005, paper OTuO3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 Experimental setup for a single-channel 10.2 Tbit/s-300 km Nyquist pulse transmission.
Fig. 2
Fig. 2 (a) Optical spectrum of a 40 GHz MLFL output pulse (black curve) and that obtained after spectral broadening and DQPSK modulation (red curve). (b) Transfer function designed to shape the spectrum of (a) into that of a Nyquist pulse with α = 0.5 for a 2.56 Tbaud transmission. (c) Optical spectrum of the generated Nyquist pulse obtained with a pulse shaper using a transfer function in (b). (d) Autocorrelation (AC) waveform of the generated Nyquist pulse.
Fig. 3
Fig. 3 Waveform of generated Nyquist OTDM signal at (a) 1.28 Tbaud and (b) 2.56 Tbaud.
Fig. 4
Fig. 4 Waveform of Nyquist OTDM signal after 300 km transmission.
Fig. 5
Fig. 5 (a) RF spectrum of the 40 GHz clock signal extracted from 2.56 Tbaud data after a 300 km transmission, and (b) SSB phase noise power density vs. offset frequency at the 40 GHz carrier frequency.
Fig. 6
Fig. 6 Autocorrelation waveform (a) and optical spectrum (b) of a NOLM control pulse obtained with pulse compression and shaping.
Fig. 7
Fig. 7 Autocorrelation waveform of a sampling gate realized for 2.56 Tbaud → 40 Gbaud demultiplexing.
Fig. 8
Fig. 8 (a) Waveform of a demultiplexed 40 Gbaud signal from a 2.56 Tbaud Nyquist OTDM signal, and (b) spectra of signal and control pulses at the output of the NOLM.
Fig. 9
Fig. 9 Relationship between NOLM gate width and back-to-back BER.
Fig. 10
Fig. 10 Change in the error signal of the phase difference between a 40 GHz clock output from the MLFL and that extracted just before the NOLM.
Fig. 11
Fig. 11 Pulse waveform (a) and optical spectrum (b) of a 40 Gbaud demultiplexed signal with and without RZ-CW conversion. The black curve is without RZ-CW conversion and the red is with RZ-CW conversion.
Fig. 12
Fig. 12 Launched power dependence of the BER in a 10.2 Tbit/s Nyquist pulse transmission over 300 km.
Fig. 13
Fig. 13 Optical spectrum of a 10.2 Tbit/s OTDM signal for back-to-back (black) and 300 km (red) transmissions measured with a 0.1 nm resolution. The blue curve shows the spectrum of a Nyquist pulse of α = 0.5 as shown in Fig. 2(c).
Fig. 14
Fig. 14 40 Gbaud DQPSK pulse demultiplexed from a 2.56 Tbaud signal after a 300 km transmission (top) and their demodulated waveforms with a balanced PD (bottom). (a) single polarization, (b) polarization multiplexed.
Fig. 15
Fig. 15 (a) Optical spectra of signal and crosstalk after propagation over 300 km, and (b) the growth in polarization crosstalk over the transmission distance.
Fig. 16
Fig. 16 BER characteristics for one tributary in a 10.2 Tbit/s-300 km transmission.
Fig. 17
Fig. 17 BERs for all tributaries in (a) single-polarization (5.12 Tbit/s) and (b) polarization-multiplexed (10.2 Tbit/s) transmissions at 2.56 Tbaud over 300 km.
Fig. 18
Fig. 18 (a) Transfer function designed to shape the spectrum of Fig. 2(a) into that of a Nyquist pulse with α = 0 for 2.56 Tbaud transmission. (b) Optical spectrum of the generated Nyquist pulse obtained by using the transfer function in (a). (c) Autocorrelation (AC) waveform of the generated Nyquist pulse. (d) Optical spectrum of a 10.2 Tbit/s OTDM signal measured with a 0.1 nm resolution. The blue curve shows the spectrum of an ideal Nyquist pulse of α = 0 (the same as the blue curve in (b)).
Fig. 19
Fig. 19 (a) Waveform of a demultiplexed 40 Gbaud signal from a 2.56 Tbaud Nyquist OTDM signal with α = 0, and (b) spectra of signal and control pulses at the output of the NOLM.
Fig. 20
Fig. 20 BER characteristics for one tributary in a 10.2 Tbit/s-225 km transmission using a Nyquist pulse with α = 0.
Fig. 21
Fig. 21 BER for all tributaries in (a) single-polarization (5.12 Tbit/s) and (b) polarization-multiplexed (10.2 Tbit/s) transmissions at 2.56 Tbaud over 225 km using a Nyquist pulse with α = 0.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r AC (t)= 3 2 [ ( T πt ) 2 cos( πt/T )sin( πt/T ) ( πt/T ) 3 ].

Metrics