Abstract

In this work, an interferometric sensor has been interrogated 290 km away from the monitoring station, reaching the longest distance in fiber optic sensing up to date. This has been attained by employing a double-pumped random distributed feedback fiber laser as the light source for a fiber optic low-coherence interferometry scheme. Additionally, the capability of the system to achieve coherence multiplexing for ultra-long range measurements (up to 270 km) has been proved, without presenting crosstalk between the sensors. The use of coherence multiplexing together with a random distributed feedback fiber laser addresses two of the main limitations of long-range sensing setups: their limited multiplexing capability and the need to reach the maximum monitoring distance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers

Yabai He, Chunjiang Jin, Ruifeng Kan, Jianguo Liu, Wenqing Liu, Julian Hill, Ian M. Jamie, and Brian J. Orr
Opt. Express 22(11) 13170-13189 (2014)

Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han
Opt. Express 21(11) 13402-13407 (2013)

Long-distance fiber-optic point-sensing systems based on random fiber lasers

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang
Opt. Express 20(16) 17695-17700 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).
  2. N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).
  3. L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
    [Crossref]
  4. M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel) 12(4), 3929–3951 (2012).
    [Crossref] [PubMed]
  5. T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” in 19th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2008) 7004, p. 70046C, (2008).
    [Crossref]
  6. M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
    [Crossref] [PubMed]
  7. M. Bravo, J. M. Baptista, J. L. Santos, M. Lopez-Amo, and O. Frazão, “Ultralong 250 km remote sensor system based on a fiber loop mirror interrogated by an optical time-domain reflectometer,” Opt. Lett. 36(20), 4059–4061 (2011).
    [Crossref] [PubMed]
  8. A. D. Kersey, A. Dandridge, and A. B. Tveten, Overview of multiplexing techniques for interferometric fiber sensors,” In Fiber optic and laser sensors V (Vol. 838, pp. 184–194). International Society for Optics and Photonics, (1988).
  9. J. S. S. M. S. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber Integr. Opt. 17(1), 3–20 (1998).
    [Crossref]
  10. D. Leandro, V. deMiguel Soto, R. A. Perez-Herrera, M. B. Acha, and M. López-Amo, “Random DFB fiber laser for remote (200 km) sensor monitoring using hybrid WDM/TDM,” J. Lightwave Technol. 34(19), 4430–4436 (2016).
    [Crossref]
  11. M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
    [Crossref]
  12. J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
    [Crossref]
  13. D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
    [Crossref]
  14. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
    [Crossref]
  15. D. Inaudi, S. Vurpillot, and S. L. Loret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation (Vol. 2718, pp. 251–258). International Society for Optics and Photonics, (1996).
  16. Z. G. Guan, D. Chen, and S. He, “Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity,” J. Lightwave Technol. 25(8), 2143–2148 (2007).
    [Crossref]
  17. D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34(7), 1912–1916 (1995).
    [Crossref]
  18. M. E. Jones, J. L. Grace, J. A. Greene, T. A. Tran, V. Bhatia, K. A. Murphy, and R. O. Claus, “Multiplexed absolute strain measurements using extrinsic Fabry-Perot interferometers,” In Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation (Vol. 2444, pp. 267–276). International Society for Optics and Photonics, (1995).
  19. S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (pp. 26–28), (1983).
  20. Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
    [Crossref]
  21. H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22(23), 1814–1816 (1997).
    [Crossref] [PubMed]
  22. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
    [Crossref]
  23. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1), 78–80 (1993).
    [Crossref] [PubMed]
  24. M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
    [Crossref]
  25. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  26. Y. J. Rao and W. L. Zhang, “Recent progress in random fiber lasers,” In Optical Communications and Networks (ICOCN), 2013 12th International Conference on (pp. 1–4). IEEE (2013).
    [Crossref]
  27. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
    [Crossref]
  28. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [Crossref] [PubMed]
  29. J. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004).
    [Crossref] [PubMed]
  30. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [Crossref] [PubMed]

2016 (1)

2012 (1)

M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel) 12(4), 3929–3951 (2012).
[Crossref] [PubMed]

2011 (3)

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
[Crossref] [PubMed]

M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
[Crossref]

M. Bravo, J. M. Baptista, J. L. Santos, M. Lopez-Amo, and O. Frazão, “Ultralong 250 km remote sensor system based on a fiber loop mirror interrogated by an optical time-domain reflectometer,” Opt. Lett. 36(20), 4059–4061 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).

2007 (1)

2006 (1)

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

2005 (1)

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

2004 (1)

2000 (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

1998 (1)

J. S. S. M. S. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber Integr. Opt. 17(1), 3–20 (1998).
[Crossref]

1997 (2)

M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
[Crossref]

H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22(23), 1814–1816 (1997).
[Crossref] [PubMed]

1996 (1)

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

1995 (1)

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34(7), 1912–1916 (1995).
[Crossref]

1994 (1)

D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
[Crossref]

1993 (1)

1985 (1)

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Acha, M. B.

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (pp. 26–28), (1983).

Alcon-Camas, M.

Ania-Castañon, J. D.

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Ania-Castañón, J.

Ania-Castañón, J. D.

Asokan, S.

A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

Baptista, J. M.

Barnsley, P. E.

D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
[Crossref]

Belleville, C.

Beverini, N.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Bravo, M.

Brooks, J.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Cahill, M. J. L.

M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
[Crossref]

Calamai, M.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Carbone, D.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Carelli, G.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Chen, D.

Choi, H. S.

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Corredera, P.

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (pp. 26–28), (1983).

Cusworth, J. S. S. M. S.

J. S. S. M. S. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber Integr. Opt. 17(1), 3–20 (1998).
[Crossref]

Davies, D. E. N.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (pp. 26–28), (1983).

deMiguel Soto, V.

Duplain, G.

Ellis, A. D.

D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
[Crossref]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Fernandez-Vallejo, M.

M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel) 12(4), 3929–3951 (2012).
[Crossref] [PubMed]

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
[Crossref] [PubMed]

Fotino, N.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Frazão, O.

Gambino, S.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Gnyba, M.

M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
[Crossref]

Gonzalez-Herraez, M.

Grassi, R.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Guan, Z. G.

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

He, S.

Inaudi, D.

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34(7), 1912–1916 (1995).
[Crossref]

Jackson, D. A.

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Jedrzejewska-Szczerska, M.

M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
[Crossref]

Jia, X. H.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Jiang, Y.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Kim, B.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Kosmowski, B. B.

M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
[Crossref]

Leandro, D.

Lee, C. E.

Li, D. S.

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

Li, H.

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

Lopez-Amo, M.

M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel) 12(4), 3929–3951 (2012).
[Crossref] [PubMed]

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
[Crossref] [PubMed]

M. Bravo, J. M. Baptista, J. L. Santos, M. Lopez-Amo, and O. Frazão, “Ultralong 250 km remote sensor system based on a fiber loop mirror interrogated by an optical time-domain reflectometer,” Opt. Lett. 36(20), 4059–4061 (2011).
[Crossref] [PubMed]

López-Amo, M.

Maccioni, E.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Martin-Lopez, S.

Messina, A.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Morganti, M.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Mukherjee, B.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

Pendock, G. J.

M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
[Crossref]

Perez-Herrera, R. A.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Prasad, A. G.

A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).

Rao, Y. J.

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Ren, L.

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

Rodriguez, F.

Rota-Rodrigo, S.

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
[Crossref] [PubMed]

Sampson, D. D.

M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
[Crossref]

Santos, J. L.

Shaw, H.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Sorrentino, F.

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

Spirit, D. M.

D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
[Crossref]

Sun, L.

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

Tatavarti, R.

A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).

Taylor, H. F.

Thévenaz, L.

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Tur, M. O. S. H. E.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

Wang, Z. N.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Wentworth, R.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Yang, Z. X.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Youngquist, R.

J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[Crossref]

Zhang, W. L.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Zhou, J.

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

Zhu, J. M.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

Acta Phys. Pol. A (1)

M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011).
[Crossref]

Fiber Integr. Opt. (1)

J. S. S. M. S. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber Integr. Opt. 17(1), 3–20 (1998).
[Crossref]

IEEE Commun. Mag. (1)

D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE Commun. Mag. 32(12), 56–62 (1994).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 (1997).
[Crossref]

J. Lightwave Technol. (3)

J. Micromech. Microeng. (1)

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Meas. Sci. Technol. (1)

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Nat. Photonics (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Opt. Eng. (2)

L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg grating sensors,” Opt. Eng. 45(8), 084401 (2006).
[Crossref]

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34(7), 1912–1916 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Sensors (Basel) (3)

M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel) 12(4), 3929–3951 (2012).
[Crossref] [PubMed]

A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009).

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011).
[Crossref] [PubMed]

Other (8)

Y. J. Rao and W. L. Zhang, “Recent progress in random fiber lasers,” In Optical Communications and Networks (ICOCN), 2013 12th International Conference on (pp. 1–4). IEEE (2013).
[Crossref]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics and Photonics, (2012).
[Crossref]

N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” in 19th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2008) 7004, p. 70046C, (2008).
[Crossref]

A. D. Kersey, A. Dandridge, and A. B. Tveten, Overview of multiplexing techniques for interferometric fiber sensors,” In Fiber optic and laser sensors V (Vol. 838, pp. 184–194). International Society for Optics and Photonics, (1988).

M. E. Jones, J. L. Grace, J. A. Greene, T. A. Tran, V. Bhatia, K. A. Murphy, and R. O. Claus, “Multiplexed absolute strain measurements using extrinsic Fabry-Perot interferometers,” In Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation (Vol. 2444, pp. 267–276). International Society for Optics and Photonics, (1995).

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (pp. 26–28), (1983).

D. Inaudi, S. Vurpillot, and S. L. Loret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation (Vol. 2718, pp. 251–258). International Society for Optics and Photonics, (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Set-up 1.Schematic set-up with one sensor.
Fig. 2
Fig. 2 Set-up 2. Schematic set-up with two sensors.
Fig. 3
Fig. 3 Normalized a) experimental and b) simulated traces detected at the output of the FOLCI scheme.
Fig. 4
Fig. 4 Optical spectrum of the random DFB fiber laser measured after 290 km.
Fig. 5
Fig. 5 Experimental traces detected at the output of the FOLCI scheme for three different sensor states.
Fig. 6
Fig. 6 Experimental traces detected at the output of the FOLCI scheme after post-processing.
Fig. 7
Fig. 7 Experimental displacement measurements for one sensor.
Fig. 8
Fig. 8 Optical spectrum of the random DFB fiber laser measured after 270 km.
Fig. 9
Fig. 9 Experimental traces detected at the output of the FOLCI scheme for three different sensor states.
Fig. 10
Fig. 10 Experimental traces detected at the output of the FOLCI scheme after post-processing.
Fig. 11
Fig. 11 Experimental displacement measurements for two sensors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(ΔL)= I 0 ( 1+ K 1 K 2 K 3 K 4 exp ( 2ΔL L c ) 2 cos( kΔL ) )

Metrics