Abstract

Recently, it was noted that losses in plasmonics can also enable several useful optical functionalities. One class of structures that can maximize absorption are metal insulator metal systems. Here, we study 3-layer systems with a nano-composite metal layer as top layer. These systems can absorb almost 100% of light at visible frequencies, even though they contain only dielectrics and highly reflecting metals. We elucidate the underlying physical phenomenon that leads to this extraordinary high and broadband absorption. A comprehensive study of the particle material and shape, mirror material and dielectric spacer thickness is provided to identify their influence on the overall absorption. Thus, we can provide detailed design guidelines for realizing optical functionalities that require near-perfect absorption over specific wavelength bands. Our results reveal the strong role of lossy Fabry-Perot interference within these systems despite their thickness being well below half a wavelength.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controllable coherent perfect absorption in a composite film

Shourya Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal
Opt. Express 20(2) 1330-1336 (2012)

Direction-independent dual-band perfect absorption induced by fundamental magnetic polaritons

Yuepei Cai, Yong Huang, Keyong Zhu, and Huihai Wu
Opt. Express 27(20) A1431-A1440 (2019)

Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures

Wonkyu Kim, Blake S. Simpkins, James P. Long, Boyang Zhang, Joshua Hendrickson, and Junpeng Guo
J. Opt. Soc. Am. B 32(8) 1686-1692 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
    [Crossref]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. W. Zhang and O. J. F. Martin, “A universal law for plasmon resonance shift in biosensing,” ACS Photonics 2(1), 144–150 (2015).
    [Crossref]
  4. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
    [Crossref]
  5. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
    [Crossref] [PubMed]
  6. W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
    [Crossref] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  8. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
    [Crossref] [PubMed]
  9. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [Crossref]
  10. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
    [Crossref] [PubMed]
  11. Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
    [Crossref]
  12. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
    [Crossref]
  13. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  14. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  15. A. Leitner, Z. Zhao, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Optical properties of a metal island film close to a smooth metal surface,” Appl. Opt. 32(1), 102–110 (1993).
    [Crossref] [PubMed]
  16. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
    [Crossref]
  17. T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
    [Crossref]
  18. K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
    [Crossref]
  19. W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
    [Crossref]
  20. M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
    [Crossref]
  21. R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
    [Crossref]
  22. K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
    [Crossref]
  23. H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
    [Crossref] [PubMed]
  24. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
    [Crossref]
  25. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  26. J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
    [Crossref]
  27. B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
    [Crossref] [PubMed]
  28. S. Hewlett and A. Mock, “Engineering metamaterial absorbers from dense gold nanoparticle stacks,” J. Appl. Phys. 122(9), 093103 (2017).
    [Crossref]
  29. M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
    [Crossref] [PubMed]
  30. C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
    [Crossref] [PubMed]
  31. P. Feng, W.-D. Li, and W. Zhang, “Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber,” Opt. Express 23(3), 2328–2338 (2015).
    [Crossref] [PubMed]
  32. “ http://www.lumerical.com/tcad-products/fdtd/ ,” (2018).
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1998).
  34. D. Brunazzo, E. Descrovi, and O. J. F. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34(9), 1405–1407 (2009).
    [Crossref] [PubMed]
  35. J. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
    [Crossref] [PubMed]
  36. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  37. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
    [Crossref]
  38. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
    [Crossref] [PubMed]
  39. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [Crossref] [PubMed]
  40. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
    [Crossref]
  41. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [Crossref] [PubMed]
  42. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
    [Crossref]
  43. H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
    [Crossref] [PubMed]
  44. K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
    [Crossref]
  45. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
    [Crossref]

2018 (2)

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

2017 (5)

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

S. Hewlett and A. Mock, “Engineering metamaterial absorbers from dense gold nanoparticle stacks,” J. Appl. Phys. 122(9), 093103 (2017).
[Crossref]

2016 (5)

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

2015 (6)

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

W. Zhang and O. J. F. Martin, “A universal law for plasmon resonance shift in biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

P. Feng, W.-D. Li, and W. Zhang, “Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber,” Opt. Express 23(3), 2328–2338 (2015).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

2014 (4)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref] [PubMed]

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

2011 (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

2010 (5)

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

2009 (2)

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

D. Brunazzo, E. Descrovi, and O. J. F. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34(9), 1405–1407 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

2006 (2)

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
[Crossref] [PubMed]

2005 (2)

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
[Crossref] [PubMed]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
[Crossref]

2004 (2)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

2003 (1)

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

2001 (1)

1993 (1)

1984 (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Alketbi, A. S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aussenegg, F. R.

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Badenes, G.

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Baker, D.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Berean, K. J.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Boes, A.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Borrelli, N. F.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Brunazzo, D.

Brunner, H.

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Carrilero, A.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Cesario, J.

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chang, S.-W.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Chen, G.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Chen, J.-W.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Chettiar, U. K.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Chirumamilla, M.

Choi, B. H.

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

Chu, C. H.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Chun, S.

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

Cooper, T. A.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Cui, Y.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Czaplewski, D.

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Della Gaspera, E.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Deng, H.

Dereshgi, S. A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Descrovi, E.

Ding, F.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Drachev, V. P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Elbahri, M.

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Enoch, S.

Etrich, C.

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

Fahr, S.

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

Fang, N. X.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Faupel, F.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref] [PubMed]

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Feng, P.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Field, M. R.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Fischer, H.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

Gao, J.

García de Abajo, F. J.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
[Crossref]

Geng, J.

Genov, D. A.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Ghosh, D. S.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Greve, H.

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

Gu, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Hao, Y.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

He, S.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref] [PubMed]

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hewlett, S.

S. Hewlett and A. Mock, “Engineering metamaterial absorbers from dense gold nanoparticle stacks,” J. Appl. Phys. 122(9), 093103 (2017).
[Crossref]

Holland, W. R.

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Hsiao, H.-H.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Huang, Y.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Huang, Y.-W.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Ji, T.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Jin, R.

Jin, S.

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Khodasevych, I.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Kildishev, A. V.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Kim, S.-H.

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Kottmann, J.

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

Kristensen, P. K.

Lai, Y.-C.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Langlet, P.

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

Lee, H.-H.

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

Lee, W. H.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Leitner, A.

Lévêque, G.

Li, W.-D.

Li, Z.

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Liang, X.

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, L.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, P.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Liu, Y.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Lu, J. Y.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Mahan, G.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Maniyara, R. A.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Martin, O.

Martin, O. J. F.

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

W. Zhang and O. J. F. Martin, “A universal law for plasmon resonance shift in biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

D. Brunazzo, E. Descrovi, and O. J. F. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34(9), 1405–1407 (2009).
[Crossref] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
[Crossref] [PubMed]

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Mazumder, P.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Meroueh, L.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mitchell, A.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Mock, A.

S. Hewlett and A. Mock, “Engineering metamaterial absorbers from dense gold nanoparticle stacks,” J. Appl. Phys. 122(9), 093103 (2017).
[Crossref]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Nelson, M. A.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

Ni, G.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Noorulla, S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Nordlander, P.

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Nyga, P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Pedersen, K.

Peng, L.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Pochstein, C.

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
[Crossref]

Premaratne, M.

Prodan, E.

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

Pruneri, V.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Qiu, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
[Crossref] [PubMed]

Raza, A.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Roberts, A. S.

Rockstuhl, C.

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

Rosengarten, G.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Rosenmann, D.

Rukhlenko, I. D.

Santschi, C.

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

Sarychev, A. K.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Schmid, T.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

Seal, K.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Shalaev, V. M.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Sivan, V.

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Stan, L.

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Takele, H.

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
[Crossref]

Thoreson, M. D.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

Tong, J. K.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Tsai, D. P.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Tseng, M. L.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Tsurimaki, Y.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Wang, D.

Wang, H.-C.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Wang, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Wokaun, A.

Wu, H. J.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Wu, P. C.

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Wu, X.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Xiao, F.

Xie, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Yan, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Yang, F.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Yang, X.

Ying, Z. C.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

Yu, R.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Zeng, L.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Zenobi, R.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

Zhang, T.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

Zhang, W.

W. Zhang and O. J. F. Martin, “A universal law for plasmon resonance shift in biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

P. Feng, W.-D. Li, and W. Zhang, “Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber,” Opt. Express 23(3), 2328–2338 (2015).
[Crossref] [PubMed]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

Zhao, Z.

Zhu, F.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Zhu, W.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

Zhu, Y.

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

ACS Nano (1)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

W. Zhang and O. J. F. Martin, “A universal law for plasmon resonance shift in biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. García de Abajo, and V. Pruneri, “Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals,” ACS Photonics 3(7), 1194–1201 (2016).
[Crossref]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. Zhang, “Near‐perfect ultrathin nanocomposite absorber with self‐formed topping plasmonic nanoparticles,” Adv. Opt. Mater. 5(18), 1700222 (2017).
[Crossref]

K. J. Berean, V. Sivan, I. Khodasevych, A. Boes, E. Della Gaspera, M. R. Field, K. Kalantar-Zadeh, A. Mitchell, and G. Rosengarten, “Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption,” Adv. Opt. Mater. 4(8), 1247–1254 (2016).
[Crossref]

K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Adv. Opt. Mater. 4(6), 871–876 (2016).
[Crossref]

Adv. Opt. Photonics (1)

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775–827 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Appl. Phys. Lett. (2)

T. Ji, L. Peng, Y. Zhu, F. Yang, Y. Cui, X. Wu, L. Liu, S. He, F. Zhu, and Y. Hao, “Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers,” Appl. Phys. Lett. 106(16), 161107 (2015).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

J. Appl. Phys. (1)

S. Hewlett and A. Mock, “Engineering metamaterial absorbers from dense gold nanoparticle stacks,” J. Appl. Phys. 122(9), 093103 (2017).
[Crossref]

J. Opt. (1)

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

J. Phys. Chem. C (1)

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113(33), 14672–14675 (2009).
[Crossref]

Materials (Basel) (2)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref] [PubMed]

C. Etrich, S. Fahr, M. K. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, “Effective optical properties of plasmonic nanocomposites,” Materials (Basel) 7(2), 727–741 (2014).
[Crossref] [PubMed]

Nano Lett. (3)

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Nanotechnology (2)

B. H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706 (2007).
[Crossref] [PubMed]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17(14), 3499–3505 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Laser Technol. (1)

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105, 102–105 (2018).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (4)

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085408 (2005).
[Crossref]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B Condens. Matter Mater. Phys. 67(3), 035318 (2003).
[Crossref]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B Condens. Matter Mater. Phys. 81(16), 165401 (2010).
[Crossref]

Phys. Rev. Lett. (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Sci. Rep. (3)

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Small (1)

H.-C. Wang, C. H. Chu, P. C. Wu, H.-H. Hsiao, H. J. Wu, J.-W. Chen, W. H. Lee, Y.-C. Lai, Y.-W. Huang, M. L. Tseng, S.-W. Chang, and D. P. Tsai, “Ultrathin planar cavity metasurfaces,” Small 14(17), e1703920 (2018).
[Crossref] [PubMed]

Other (2)

“ http://www.lumerical.com/tcad-products/fdtd/ ,” (2018).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Visualization of the simulated 3-layer model.
Fig. 2
Fig. 2 (a) Total absorption for a 3-layer system with varying number of particles inside the top layer and (b) the corresponding absorption enhancement. (c) Absorption enhancement for varying gap sizes and (d) mirror particle distance. The top left insets show a simplified top view of the system, where the blue arrow marks the source’s polarization and in (a), the bottom left inset shows a front view.
Fig. 3
Fig. 3 Intensity distribution in the X-Z-plane at three different wavelengths λ for 8 gold particles embedded in a semi-infinite dielectric atop a perfect reflector, which is located at Z = −90 nm.
Fig. 4
Fig. 4 (a) Absorption enhancement for a 3-layer system with varying number of spherical particles inside the top layer as reported in Fig. 2(b) and the enhancement for (b) hemi-spherical, (c) cylindrical (pillars) and (d) cubic particles. The top left insets show a simplified top view of the system next to a graphical visualization of the particle shape, where the blue arrow marks the source’s polarization.
Fig. 5
Fig. 5 (a) Total absorption of varying gold particles layers atop an aluminum or gold mirror layer and (b) the corresponding relative particle absorption fraction.
Fig. 6
Fig. 6 (a) Absorption enhancement for a 3-layer system with varying number of silver particles and (b) varying number of aluminum particles inside the top layer atop an aluminum mirror layer. (c) Total absorption of 3 particle layers with varying material mixtures and (d) the corresponding relative particle absorption fraction.
Fig. 7
Fig. 7 Heat source density maps evaluated at three different wavelengths for MIM systems containing (a) 3 gold particle layers, or (b) 3 silver particle layers atop an aluminum mirror.

Tables (1)

Tables Icon

Table 1 Summary of relevant simulations parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

absorption enhancement  [ % ] = A / G particle absorption  [ % ] ,
q ( r i   ) = ω   I m ( ϵ ) | E i | 2 ,

Metrics