Abstract

We propose an optical see-through holographic near-eye-display that can control the depth of field of individual virtual three-dimensional image and replicate the eyebox with dynamic steering. For optical see-through capability and eyebox duplication, a holographic optical element is used as an optical combiner where it functions as multiplexed tilted concave mirrors forming multiple copies of the eyebox. For depth of field control and eyebox steering, computer generated holograms of three-dimensional objects are synthesized with different ranges of angular spectrum. In optical experiment, it has been confirmed that the proposed system can present always-focused images with large depth of field and three-dimensional images at different distances with shallow depth of field at the same time without any time-multiplexing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical see-through Maxwellian near-to-eye display with an enlarged eyebox

Seong-Bok Kim and Jae-Hyeung Park
Opt. Lett. 43(4) 767-770 (2018)

Design of discretely depth-varying holographic grating for image guide based see-through and near-to-eye displays

Toshiteru Nakamura and Yuzuru Takashima
Opt. Express 26(20) 26520-26533 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  2. G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
    [Crossref]
  3. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref] [PubMed]
  4. A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
    [Crossref]
  5. F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
    [Crossref]
  6. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref] [PubMed]
  7. D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
    [Crossref] [PubMed]
  8. S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
    [Crossref]
  9. G. Westheimer, “The Maxwellian view,” Vision Res. 6(12), 669–682 (1966).
    [Crossref] [PubMed]
  10. M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Symposium Digest of Technical Papers (2016), pp. 164–167.
  11. N. Fujimoto, and Y. Takaki, “Holographic Maxwellian-view display system,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America 2017), paper Th3A.4.
  12. T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
    [Crossref]
  13. R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
    [Crossref]
  14. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]
  15. S.-B. Kim and J.-H. Park, “Optical see-through Maxwellian near-to-eye display with an enlarged eyebox,” Opt. Lett. 43(4), 767–770 (2018).
    [Crossref] [PubMed]
  16. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  17. H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  18. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  19. Y. Sakamoto, “Head-mounted holographic display with correct depth-focusing for AR,” in Frontiers in Optics (Optical Society of America, 2017), paper FTu4C.2.
  20. A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
  21. Q. Gao, J. Liu, T. Zhao, X. Duan, H. Ma, J. Duan, and P. Liu, “See-through and true 3D head-mounted display based on complex amplitude modulation,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), paper M2B.3.
  22. J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Disp. 18(1), 1–12 (2017).
    [Crossref]
  23. S.-B. Ko and J.-H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25(24), 29788–29797 (2017).
    [Crossref] [PubMed]
  24. M. Askari, S.-B. Kim, K.-S. Shin, S.-B. Ko, S.-H. Kim, D.-Y. Park, Y.-G. Ju, and J.-H. Park, “Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram,” Opt. Express 25(21), 25867–25878 (2017).
    [Crossref] [PubMed]
  25. M.-L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
    [Crossref]
  26. S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
    [Crossref]
  27. S. I. Kim, C.-S. Choi, A. Morozov, S. Dubynin, G. Dubinin, J. An, S.-H. Lee, Y. Kim, K. Won, H. Song, H.-S. Lee, and S. Hwang, “Slim coherent backlight unit for holographic display using full color holographic optical elements,” Opt. Express 25(22), 26781–26791 (2017).
    [Crossref] [PubMed]
  28. R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
    [Crossref] [PubMed]

2018 (3)

2017 (11)

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

M. Askari, S.-B. Kim, K.-S. Shin, S.-B. Ko, S.-H. Kim, D.-Y. Park, Y.-G. Ju, and J.-H. Park, “Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram,” Opt. Express 25(21), 25867–25878 (2017).
[Crossref] [PubMed]

S. I. Kim, C.-S. Choi, A. Morozov, S. Dubynin, G. Dubinin, J. An, S.-H. Lee, Y. Kim, K. Won, H. Song, H.-S. Lee, and S. Hwang, “Slim coherent backlight unit for holographic display using full color holographic optical elements,” Opt. Express 25(22), 26781–26791 (2017).
[Crossref] [PubMed]

S.-B. Ko and J.-H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25(24), 29788–29797 (2017).
[Crossref] [PubMed]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).

J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Disp. 18(1), 1–12 (2017).
[Crossref]

2016 (1)

2015 (2)

H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

2014 (1)

2013 (1)

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

2011 (2)

2001 (1)

M.-L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

2000 (1)

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6(12), 669–682 (1966).
[Crossref] [PubMed]

An, J.

Ando, T.

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Askari, M.

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Banks, M.

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

Banks, M. S.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Bui, B.

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

Chen, K.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Chen, N.

Cho, J.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

Choi, C.-S.

Choi, H.-J.

Cooper, E. A.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Drettakis, G.

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

Dubinin, G.

Dubynin, S.

Fuchs, H.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Georgiou, A.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).

Gritsai, Y.

Hahn, J.

Häussler, R.

Hirsch, M.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Hong, J.

Hsieh, M.-L.

M.-L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Hsu, K. Y.

M.-L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Hua, H.

Huang, F. C.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Huang, H.

Hwang, S.

Jang, C.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Jeong, Y.

Ji, Y.-M.

Jo, Y.

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

Ju, Y.-G.

Kim, D.

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

Kim, H.

Kim, H.-J.

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Kim, M.

Kim, S. I.

Kim, S.-B.

Kim, S.-H.

Kim, Y.

Ko, S.-B.

Kollin, J.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).

Konrad, R.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Koulieris, G.

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

Lanman, D.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Lee, B.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

Lee, D.

Lee, H.-S.

Lee, S.

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Lee, S.-H.

Li, B.

Li, G.

Maimone, A.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Mainmone, A.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).

Matsumoto, T.

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Min, S.-W.

Missbach, R.

Miyauchi, N.

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Symposium Digest of Technical Papers (2016), pp. 164–167.

Molner, K.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Moon, E.

Moon, S.

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Morozov, A.

Okamoto, M.

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Padmanaban, N.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Park, D.-Y.

Park, J.-H.

Raskar, R.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Roh, J.

Sahm, H.

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Shimizu, E.

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Shin, K.-S.

Song, H.

Stock, M.

Stolle, H.

Sugawara, M.

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Symposium Digest of Technical Papers (2016), pp. 164–167.

Suzuki, M.

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Symposium Digest of Technical Papers (2016), pp. 164–167.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6(12), 669–682 (1966).
[Crossref] [PubMed]

Wetzstein, G.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Won, K.

Yamasaki, K.

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Yeom, H.-J.

Zhang, H.

Zschau, E.

ACM Trans. Graph. (6)

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

G. Koulieris, B. Bui, M. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 87 (2017).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).

Appl. Opt. (2)

IEEE Access (1)

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

J. Inf. Disp. (1)

J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Disp. 18(1), 1–12 (2017).
[Crossref]

J. Vis. (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

M.-L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Opt. Express (7)

S.-B. Ko and J.-H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25(24), 29788–29797 (2017).
[Crossref] [PubMed]

M. Askari, S.-B. Kim, K.-S. Shin, S.-B. Ko, S.-H. Kim, D.-Y. Park, Y.-G. Ju, and J.-H. Park, “Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram,” Opt. Express 25(21), 25867–25878 (2017).
[Crossref] [PubMed]

S. I. Kim, C.-S. Choi, A. Morozov, S. Dubynin, G. Dubinin, J. An, S.-H. Lee, Y. Kim, K. Won, H. Song, H.-S. Lee, and S. Hwang, “Slim coherent backlight unit for holographic display using full color holographic optical elements,” Opt. Express 25(22), 26781–26791 (2017).
[Crossref] [PubMed]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref] [PubMed]

H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

D. Kim, S. Lee, S. Moon, J. Cho, Y. Jo, and B. Lee, “Hybrid multi-layer displays providing accommodation cues,” Opt. Express 26(13), 17170–17184 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, “Retinal projection display using holographic optical element,” Proc. SPIE 3956, 211–216 (2000).
[Crossref]

Vision Res. (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6(12), 669–682 (1966).
[Crossref] [PubMed]

Other (4)

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Symposium Digest of Technical Papers (2016), pp. 164–167.

N. Fujimoto, and Y. Takaki, “Holographic Maxwellian-view display system,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America 2017), paper Th3A.4.

Y. Sakamoto, “Head-mounted holographic display with correct depth-focusing for AR,” in Frontiers in Optics (Optical Society of America, 2017), paper FTu4C.2.

Q. Gao, J. Liu, T. Zhao, X. Duan, H. Ma, J. Duan, and P. Liu, “See-through and true 3D head-mounted display based on complex amplitude modulation,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), paper M2B.3.

Supplementary Material (4)

NameDescription
» Visualization 1       Always-focused-image with large depth of field presented by holographic near-eye-display. Camera focus is varying from 0.35Diopter to 3Diopter.
» Visualization 2       Three-dimensional images with shallow depth of field presented by holographic near-eye-display. Top and bottom teapots are located at 0.35 Diopter and 3 Diopter, respectively. Camera focus is varying from 0.35Diopter to 3Diopter.
» Visualization 3       Horizontal steering demonstration of focal spots in the eye pupil plane of holographic near-eye-display
» Visualization 4       Vertical steering demonstration of focal spots in the eye pupil plane of holographic near-eye-display

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Configuration of the proposed system.
Fig. 2
Fig. 2 Angular spectrum range and eye box formation when the carrier wave used in the CGH synthesis is given by (a) a single plane wave, (b) a range of plane waves.
Fig. 3
Fig. 3 Coordinates system for HOE and SLM.
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 HOE recording configuration.
Fig. 6
Fig. 6 Experimental results of aberration compensation. (a) No compensation, (b) simple horizontal size reduction, (c) compensation by the proposed method.
Fig. 7
Fig. 7 Angular spectrum range of the CGH and the corresponding light intensity in the eye pupil plane. Light intensity in the eye pupil plane was captured by placing a diffuser.
Fig. 8
Fig. 8 Observed images with different focal length of the camera (a) when the CGH is synthesized with narrow angular spectrum range (see Visualization 1) (b) when the CGH is synthesized with wide angular spectrum range (see Visualization 2).
Fig. 9
Fig. 9 Focal spot steering in (a) horizontal (see Visualization 3) and vertical (see Visualization 4) direction. (b) Observed images with different focal spot and camera pupil positions.
Fig. 10
Fig. 10 Observed images when two images at different distances with shallow depth of field and an image with large depth of field are displayed.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G( f x,y ){ D( f x,y ) G r ( A T [ 1 0 0 0 1 0 ]R{ f x,y,z [ 0 0 1/λ ] } ) } e j2π f xl,yl,zl T c det( A ) f zl f z ,
D( f x,y )=a( f x,y )exp[ j2π f x,y,z T r x,y,z o ],
K= k r k s =k[ sinα 0 cosα ] k x hoe 2 + y hoe 2 + f 2 [ x hoe y hoe f ],
k o = k ( x hoe x hoe o ) 2 + ( y hoe y hoe o ) 2 + z hoe o 2 [ x hoe + x hoe o y hoe + y hoe o z hoe o ],
k i,x,hoe = k o,x,hoe + K x,hoe = k( x hoe + x hoe o ) ( x hoe x hoe o ) 2 + ( y hoe y hoe o ) 2 + z hoe o 2 +ksinα+ k x hoe x hoe 2 + y hoe 2 + f 2 ,
k i,y,hoe = k o,y,hoe + K y,hoe = k( y hoe + y hoe o ) ( x hoe x hoe o ) 2 + ( y hoe y hoe o ) 2 + z hoe o 2 + k y hoe x hoe 2 + y hoe 2 + f 2 .
ϕ( x hoe , y hoe )=k ( x hoe x hoe o ) 2 + ( y hoe y hoe o ) 2 + z hoe o 2 +k x hoe 2 + y hoe 2 + f 2 +( ksinα ) x hoe ,
G slm ( f x,slm , f y,slm )= G hoe ( f x,hoe , f y,hoe ) f z,hoe f z,slm exp[ j2πd f z,slm ] = G hoe,o ( f x,hoe sinα λ , f y,hoe ) f z,hoe f z,slm exp[ j2πd f z,slm ],
[ f x,hoe f y,hoe f z,hoe ]=[ cosα 0 sinα 0 1 0 sinα 0 cosα ][ f x,slm f y,slm f z,slm ],
fλcosα 2p <x< fλcosα 2p , fλ 2p <y< fλ 2p .

Metrics