Abstract

This study investigates the extent to which a windscreen affects the severity of laser eye dazzle (disability glare produced by a laser) experienced by a human observer. Windscreen scatter measurements were taken for a range of windscreens in a variety of conditions, showing that windscreen scatter is similar in magnitude to scatter from the human eye. Human subject experiments verified that obscuration angles caused by laser eye dazzle could be increased by the presence of a windscreen when comparing a dirty automobile windscreen to an eye-only condition with a 532-nm laser exposure. However, a light aircraft windscreen with lower scatter did not exhibit increased obscuration angles at 532 nm, and neither windscreen exhibited an increase at 635 nm. A theoretical analysis of laser eye dazzle, using measured windscreen scatter functions, has provided insight into the delicate interplay between scatter, transmission and the angular extent of dazzle. A model based on this analysis has been shown to be a useful tool to predict the impact of windscreens on laser eye dazzle, with the goal of informing future updates to the authors’ laser eye dazzle safety framework.

Full Article  |  PDF Article

Corrections

22 October 2018: Typographical corrections were made to Refs. 1, 2, and 14.


OSA Recommended Articles
Nominal ocular dazzle distance (NODD)

Craig A. Williamson and Leon N. McLin
Appl. Opt. 54(7) 1564-1572 (2015)

Laser glare in the cockpit: psychophysical estimates versus model predictions of veiling luminance distribution

Dennis W. Blick, Jeremy M. A. Beer, William D. Kosnik, Steven Troxel, Alexander Toet, Jan Walraven, and Wallace Mitchell
Appl. Opt. 40(10) 1715-1726 (2001)

Sources of Entoptic Scatter in the Human Eye*

Robert M. Boynton and Frank J. J. Clarke
J. Opt. Soc. Am. 54(1) 110-119 (1964)

References

  • View by:
  • |
  • |
  • |

  1. LaserPointerSafety.com, “US: 6,753 laser/aircraft incidents reported to FAA in 2017; 9% lower than 2016,” http://www.laserpointersafety.com/news/news/other-news_files/d5fca5f3330bef52f1c5465b03502776-569.php#on .
  2. Joint Non-Lethal Weapons Program, “Non-lethal optical distracters fact sheet”, (JNLWD, 2016), http://jnlwp.defense.gov/Portals/50/Documents/Press_Room/Fact_Sheets/NL_Optical_Distracters_Fact_Sheet_May_2016.pdf
  3. J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86(6), 363–370 (2003).
    [Crossref] [PubMed]
  4. C. A. Williamson, J. M. Rickman, D. A. Freeman, M. A. Manka, and L. N. McLin, “Measuring the contribution of atmospheric scatter to laser eye dazzle,” Appl. Opt. 54(25), 7567–7574 (2015).
    [Crossref] [PubMed]
  5. G. C. De Wit and J. E. Coppens, “Stray light of spectacle lenses compared with stray light in the eye,” Optom. Vis. Sci. 80(5), 395–400 (2003).
    [Crossref] [PubMed]
  6. M. J. Allen, “Windscreen dirt and surface damage effects,” Aust. J. Optom. 58, 180–189 (1975).
  7. P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).
  8. P. A. Smith, “A study of the transient effects of high energy laser light on visual function,” PhD Thesis, University of London (1996).
  9. P. L. Marasco and H. L. Task, “The effect on vision of light scatter from HMD visors and aircraft windscreens,” Proc. SPIE 3689, 2–10 (1999).
    [Crossref]
  10. P. L. Marasco and H. L. Task, “The measurement of visual performance through scattering visors and aerospace transparencies,” Proc. SPIE 4361, 188–197 (2001).
    [Crossref]
  11. D. W. Blick, J. M. Beer, W. D. Kosnik, S. Troxel, A. Toet, J. Walraven, and W. Mitchell, “Laser glare in the cockpit: psychophysical estimates versus model predictions of veiling luminance distribution,” Appl. Opt. 40(10), 1715–1726 (2001).
    [Crossref] [PubMed]
  12. A. Toet, J. K. IJspeert, H. Vos, and J. Walraven, “Computing the retinal image profile,” Tech.Rep. TNO-TM 1995C–035 (TNO Human Factors Research Institute, Soesterberg, Netherlands, 1995).
  13. A. Toet and J. W. A. M. Alferdinck, “Effects of high power illuminators on vision through windscreens and driving behavior,” Proc. SPIE 8898, 88980I (2013).
    [Crossref]
  14. C. A. Williamson, L. N. McLin, M. A. Manka, J. M. Rickman, P. V. Garcia and P. A. Smith, Data to accompany paper: “The impact of windscreen scatter on laser eye dazzle,” (2018), https://doi.org/10.6084/m9.figshare.6755831.
  15. C. A. Williamson, L. N. McLin, J. M. Rickman, M. A. Manka, P. V. Garcia, W. T. Kinerk, and P. A. Smith, “Wavelength and ambient luminance dependence of laser eye dazzle,” Appl. Opt. 56(29), 8135–8147 (2017).
    [Crossref] [PubMed]
  16. I. L. Bailey and J. E. Lovie-Kitchin, “Visual acuity testing. From the laboratory to the clinic,” Vision Res. 90, 2–9 (2013).
    [Crossref] [PubMed]
  17. J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).
  18. Air Force Medical Support Agency, “Protection of human subjects and adherence to ethical standards in Air Force supported research,” Air Force Instruction DODI3216.02_AFI 40–402, Air Force Medical Support Agency, 7700 Arlington Blvd Falls Church, VA 22042 (2014).
  19. G. Walsh, “Automobile windscreen rake, spectacle lenses, and effective transmittance,” Optom. Vis. Sci. 86(12), 1376–1379 (2009).
    [Crossref] [PubMed]
  20. C. A. Williamson, “Simple computer visualization of laser eye dazzle,” J. Laser Appl. 28(1), 012003 (2016).
    [Crossref]
  21. G. S. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg, “Physically-Based Glare Effects for Digital Images”, R. Cook, Ed., pp. 325–334, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, ACM SIGGRAPH, Addison Wesley, (1995).
    [Crossref]
  22. J. Vos, “Disability glare – a state of the art report,” CIE J. 3, 39 (1984).
  23. C. A. Williamson and L. N. McLin, “Nominal Ocular Dazzle Distance (NODD),” Appl. Opt. 54(7), 1564–1572 (2015).
    [Crossref]
  24. C. A. Williamson and L. N. McLin, “Determination of a laser eye dazzle safety framework,” J. Laser Appl. 30(3), 032010 (2018).
    [Crossref]

2018 (1)

C. A. Williamson and L. N. McLin, “Determination of a laser eye dazzle safety framework,” J. Laser Appl. 30(3), 032010 (2018).
[Crossref]

2017 (1)

2016 (1)

C. A. Williamson, “Simple computer visualization of laser eye dazzle,” J. Laser Appl. 28(1), 012003 (2016).
[Crossref]

2015 (2)

2013 (2)

A. Toet and J. W. A. M. Alferdinck, “Effects of high power illuminators on vision through windscreens and driving behavior,” Proc. SPIE 8898, 88980I (2013).
[Crossref]

I. L. Bailey and J. E. Lovie-Kitchin, “Visual acuity testing. From the laboratory to the clinic,” Vision Res. 90, 2–9 (2013).
[Crossref] [PubMed]

2009 (1)

G. Walsh, “Automobile windscreen rake, spectacle lenses, and effective transmittance,” Optom. Vis. Sci. 86(12), 1376–1379 (2009).
[Crossref] [PubMed]

2003 (2)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86(6), 363–370 (2003).
[Crossref] [PubMed]

G. C. De Wit and J. E. Coppens, “Stray light of spectacle lenses compared with stray light in the eye,” Optom. Vis. Sci. 80(5), 395–400 (2003).
[Crossref] [PubMed]

2002 (1)

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

2001 (2)

1999 (1)

P. L. Marasco and H. L. Task, “The effect on vision of light scatter from HMD visors and aircraft windscreens,” Proc. SPIE 3689, 2–10 (1999).
[Crossref]

1984 (2)

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

J. Vos, “Disability glare – a state of the art report,” CIE J. 3, 39 (1984).

1975 (1)

M. J. Allen, “Windscreen dirt and surface damage effects,” Aust. J. Optom. 58, 180–189 (1975).

Alferdinck, J. W. A. M.

A. Toet and J. W. A. M. Alferdinck, “Effects of high power illuminators on vision through windscreens and driving behavior,” Proc. SPIE 8898, 88980I (2013).
[Crossref]

Allen, M. J.

M. J. Allen, “Windscreen dirt and surface damage effects,” Aust. J. Optom. 58, 180–189 (1975).

Bailey, I. L.

I. L. Bailey and J. E. Lovie-Kitchin, “Visual acuity testing. From the laboratory to the clinic,” Vision Res. 90, 2–9 (2013).
[Crossref] [PubMed]

Beer, J. M.

Blick, D. W.

Bodmann, H.-W.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Cole, B.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Colombo, E.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Coppens, J. E.

G. C. De Wit and J. E. Coppens, “Stray light of spectacle lenses compared with stray light in the eye,” Optom. Vis. Sci. 80(5), 395–400 (2003).
[Crossref] [PubMed]

De Wit, G. C.

G. C. De Wit and J. E. Coppens, “Stray light of spectacle lenses compared with stray light in the eye,” Optom. Vis. Sci. 80(5), 395–400 (2003).
[Crossref] [PubMed]

Freeman, D. A.

Garcia, P. V.

Kinerk, W. T.

Kosnik, W. D.

Lovie-Kitchin, J. E.

I. L. Bailey and J. E. Lovie-Kitchin, “Visual acuity testing. From the laboratory to the clinic,” Vision Res. 90, 2–9 (2013).
[Crossref] [PubMed]

Manka, M. A.

Marasco, P. L.

P. L. Marasco and H. L. Task, “The measurement of visual performance through scattering visors and aerospace transparencies,” Proc. SPIE 4361, 188–197 (2001).
[Crossref]

P. L. Marasco and H. L. Task, “The effect on vision of light scatter from HMD visors and aircraft windscreens,” Proc. SPIE 3689, 2–10 (1999).
[Crossref]

McLin, L. N.

Mitchell, W.

Padmos, P.

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

Rickman, J. M.

Smith, P. A.

Takeuchi, T.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Task, H. L.

P. L. Marasco and H. L. Task, “The measurement of visual performance through scattering visors and aerospace transparencies,” Proc. SPIE 4361, 188–197 (2001).
[Crossref]

P. L. Marasco and H. L. Task, “The effect on vision of light scatter from HMD visors and aircraft windscreens,” Proc. SPIE 3689, 2–10 (1999).
[Crossref]

Toet, A.

Troxel, S.

van den Berg, T. J. T. P.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Vos, J.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

J. Vos, “Disability glare – a state of the art report,” CIE J. 3, 39 (1984).

Vos, J. J.

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86(6), 363–370 (2003).
[Crossref] [PubMed]

Walraven, J.

Walsh, G.

G. Walsh, “Automobile windscreen rake, spectacle lenses, and effective transmittance,” Optom. Vis. Sci. 86(12), 1376–1379 (2009).
[Crossref] [PubMed]

Williamson, C. A.

Appl. Opt. (4)

Aust. J. Optom. (1)

M. J. Allen, “Windscreen dirt and surface damage effects,” Aust. J. Optom. 58, 180–189 (1975).

CIE J. (2)

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

J. Vos, “Disability glare – a state of the art report,” CIE J. 3, 39 (1984).

CIE TC Report CIE (1)

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE Equations for Disability Glare,” CIE TC Report CIE 146, 2002 (2002).

Clin. Exp. Optom. (1)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86(6), 363–370 (2003).
[Crossref] [PubMed]

J. Laser Appl. (2)

C. A. Williamson, “Simple computer visualization of laser eye dazzle,” J. Laser Appl. 28(1), 012003 (2016).
[Crossref]

C. A. Williamson and L. N. McLin, “Determination of a laser eye dazzle safety framework,” J. Laser Appl. 30(3), 032010 (2018).
[Crossref]

Optom. Vis. Sci. (2)

G. Walsh, “Automobile windscreen rake, spectacle lenses, and effective transmittance,” Optom. Vis. Sci. 86(12), 1376–1379 (2009).
[Crossref] [PubMed]

G. C. De Wit and J. E. Coppens, “Stray light of spectacle lenses compared with stray light in the eye,” Optom. Vis. Sci. 80(5), 395–400 (2003).
[Crossref] [PubMed]

Proc. SPIE (3)

P. L. Marasco and H. L. Task, “The effect on vision of light scatter from HMD visors and aircraft windscreens,” Proc. SPIE 3689, 2–10 (1999).
[Crossref]

P. L. Marasco and H. L. Task, “The measurement of visual performance through scattering visors and aerospace transparencies,” Proc. SPIE 4361, 188–197 (2001).
[Crossref]

A. Toet and J. W. A. M. Alferdinck, “Effects of high power illuminators on vision through windscreens and driving behavior,” Proc. SPIE 8898, 88980I (2013).
[Crossref]

Vision Res. (1)

I. L. Bailey and J. E. Lovie-Kitchin, “Visual acuity testing. From the laboratory to the clinic,” Vision Res. 90, 2–9 (2013).
[Crossref] [PubMed]

Other (7)

Air Force Medical Support Agency, “Protection of human subjects and adherence to ethical standards in Air Force supported research,” Air Force Instruction DODI3216.02_AFI 40–402, Air Force Medical Support Agency, 7700 Arlington Blvd Falls Church, VA 22042 (2014).

C. A. Williamson, L. N. McLin, M. A. Manka, J. M. Rickman, P. V. Garcia and P. A. Smith, Data to accompany paper: “The impact of windscreen scatter on laser eye dazzle,” (2018), https://doi.org/10.6084/m9.figshare.6755831.

A. Toet, J. K. IJspeert, H. Vos, and J. Walraven, “Computing the retinal image profile,” Tech.Rep. TNO-TM 1995C–035 (TNO Human Factors Research Institute, Soesterberg, Netherlands, 1995).

P. A. Smith, “A study of the transient effects of high energy laser light on visual function,” PhD Thesis, University of London (1996).

LaserPointerSafety.com, “US: 6,753 laser/aircraft incidents reported to FAA in 2017; 9% lower than 2016,” http://www.laserpointersafety.com/news/news/other-news_files/d5fca5f3330bef52f1c5465b03502776-569.php#on .

Joint Non-Lethal Weapons Program, “Non-lethal optical distracters fact sheet”, (JNLWD, 2016), http://jnlwp.defense.gov/Portals/50/Documents/Press_Room/Fact_Sheets/NL_Optical_Distracters_Fact_Sheet_May_2016.pdf

G. S. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg, “Physically-Based Glare Effects for Digital Images”, R. Cook, Ed., pp. 325–334, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, ACM SIGGRAPH, Addison Wesley, (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Optical arrangement for laser beam delivery
Fig. 2
Fig. 2 NAAD mounted on motorized rotation stage.
Fig. 3
Fig. 3 Block diagram of the experimental set-up.
Fig. 4
Fig. 4 Diagram illustrating how the center of the laser beam was translated to be central to the rotating NAAD’s field of view.
Fig. 5
Fig. 5 Profile view of windscreen mount assembly with (a) Clear Acrylic Cessna 172 aircraft windscreen, (b) Tinted Acrylic Cessna 172 aircraft windscreen, (c) Laminated Glass Chevrolet Malibu automobile windscreen, and (d) Bubble Acrylic Zenith Zodiac 601 aircraft windscreen.
Fig. 6
Fig. 6 Experimental setup showing the chin rest on the left behind the windscreen, with the tablet computer and robot rail on the right of the image.
Fig. 7
Fig. 7 Example scatter measurements, taken from a Clear Acrylic windscreen in clean condition with normal angle of incidence for a 532-nm laser.
Fig. 8
Fig. 8 (a) Highest and lowest windscreen scatter measured by these experiments. (b) Comparison of highest and lowest windscreen scatter to scatter from the eye and the atmosphere.
Fig. 9
Fig. 9 Comparison of windscreen scatter from this work to that measured by Padmos [7] (also verified by Toet and Alferdinck [13]) and Smith [8].
Fig. 10
Fig. 10 Comparison of scatter from each windscreen type for the as-flown/driven, 532 nm condition for (a) clean and (b) dirty windscreens.
Fig. 11
Fig. 11 Comparison of scatter for Clear Acrylic in different conditions with as-flown orientation at 532 nm.
Fig. 12
Fig. 12 Comparison of scatter from (a) Clear Acrylic, Clean and (b) Laminated Glass, Dirty windscreens at different angles of incidence.
Fig. 13
Fig. 13 Comparison of 532 nm and 635 nm scatter for the (a) Clear Acrylic and (b) Laminated Glass windscreens in clean condition and as-flown/driven angle of incidence.
Fig. 14
Fig. 14 Threshold angle against laser irradiance at the eye for (left) 532-nm and (right) 635-nm laser exposures for human observer experiments log-averaged across subjects with 95% confidence intervals shown as error bars
Fig. 15
Fig. 15 Threshold angle against laser irradiance at the front of the windscreen for (left) 532-nm and (right) 635-nm laser exposures for (a) human observer experiments log-averaged across subjects with 95% confidence intervals shown as error bars and (b) the accompanying theoretical model (see section 3.3).
Fig. 16
Fig. 16 Simulations to visualize the impact of the Laminated Glass windscreen on the laser eye dazzle likely to be experienced at 10 cd·m−2 ambient luminance. In these simulations, the threshold angles are represented as the radius of the dazzle field, taken approximately as the distance from the center of the white circle to the edge of the solid green dazzle field, which is an over-estimate of the real-world dazzle effect. The image horizontal field of view is 90°. Modified from an original image showing the view from the cockpit of a Hawk TMK1 of the Red Arrows (Defence Imagery Database, contains public sector information licensed under the Open Government Licence v3.0)
Fig. 17
Fig. 17 Comparison of scatter for the eye only versus scatter for the eye behind a windscreen, accounting for windscreen transmission, with (left) 532-nm laser and (right) 635-nm laser.

Tables (6)

Tables Icon

Table 1 List of optical components used for laser beam delivery

Tables Icon

Table 2 Matrix of test articles and conditions. Rake angles are denoted as (N) for ‘normal’, (F) for ‘as-flown/driven’, and (E) for ‘extreme’.

Tables Icon

Table 3 Matrix of test conditions for the human subject experiment. Rake angles are denoted (F) for ‘as-flown/driven’.

Tables Icon

Table 4 Fitting equations for windscreen scatter, following f(θ) = kθn

Tables Icon

Table 5 Experimental and theoretical (see section 3.3) threshold angles for each test condition at laser irradiances at the front of the windscreen of 5, 50 and 500 µW∙cm−2.

Tables Icon

Table 6 Fitting equations for windscreen scatter, following f(θ) = kθn

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f windscreen ( θ ) =   I ( θ ) Ω I TOTAL   .
θ t h = 10 log ( θ m a x ) ( X s u m X m a x ) ( 5   X m a x ) .
L v = f ( θ )   E l ,
E l = 683   V ( λ )   U ,
L v = f e y e ( θ )   683     V ( λ )   U ,
f e y e ( θ ) = 0.9147   L b 0.1775 . ( 10 θ 3 + [ 5 θ 2 + 0.1 p θ ] [ 1 + ( A 62.5 ) 4 ] + 0.0025 p ) ,
L v = f w i n d s c r e e n ( θ )   683     V ( λ )   U +   f e y e ( θ )   683     V ( λ )   T   U ,
L v = ( f w i n d s c r e e n ( θ ) + T   f e y e ( θ ) )   ( 683     V ( λ )   U ) ,
f w i n d s c r e e n ( θ ) = k   θ n ,
L v = L b C o r i g C t h L b ,

Metrics