Abstract

In order to provide a theoretical reference for the personalized design and color temperature adjustment of LED backlight displayer, the spectral distribution of the LED backlight displayer at different color temperatures (1200-6500K) was measured. According to the transmittance of human eye at different ages (1-100 years old), the effective spectral distribution of the LED backlight displayer on the retina of the human eye at different ages was calculated. Based on the fitting of the response function of the human eye, the correlation studies on the changes of the blue light hazard factor, the proportion of blue light in the range of wavelength 400-500 nm, the circadian rhythm factor, and the proportion of blue light in the range of wavelength 446-477 nm with color temperature and age were conducted respectively. The results showed that the blue light hazard and circadian rhythm increased with the increase of the color temperature while decreased with the increase of age. For one-year-old infants, when the color temperature increased from 1200K to 6500K, the blue light hazard factor and circadian rhythm factor of the effective spectrum of the retina increased by 12.2 and 9.5 times respectively. For a 6500K LED backlight displayer, when the age increased from 1-year-old to 100 years old, the corresponding value of the two factors decreased by 0.2 and 0.3 times respectively. The proportion of blue light in the range of wavelength 400-500 nm can be used to approximately replace the blue light hazard factor to demonstrate the degree of blue light hazard. This conclusion can provide a certain theoretical reference for the personalized design and use of LED backlight displayer from the perspective of blue light hazard and circadian rhythm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting

Qi Dai, Qifeng Shan, Hien Lam, Luoxi Hao, Yi Lin, and Zhe Cui
Opt. Express 24(18) 20049-20059 (2016)

Design of circadian white light-emitting diodes with tunable color temperature and nearly perfect color rendition

Peifen Zhu, Hongyang Zhu, Gopi C. Adhikari, and Saroj Thapa
OSA Continuum 2(8) 2413-2427 (2019)

Optimization of solid-state lamps for photobiologically friendly mesopic lighting

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta
Appl. Opt. 51(35) 8423-8432 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
    [Crossref] [PubMed]
  2. Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24(18), 20049–20059 (2016).
    [Crossref] [PubMed]
  3. R. G. Stevens and Y. Zhu, “Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140120 (2015).
    [Crossref] [PubMed]
  4. J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
    [Crossref] [PubMed]
  5. P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
    [Crossref]
  6. C. A. Czeisler, “Perspective: casting light on sleep deficiency,” Nature 497(7450), S13 (2013).
    [Crossref] [PubMed]
  7. L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
    [Crossref]
  8. M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
    [Crossref]
  9. Bergman R S, Barling L, Bouman A, Drop P, Goodman T, Hietanen M, Ikai Y, Kohmoto K, Kotschenreuther R, Levin R, Masuda T, Riedmann W, Schulmeister K, Sliney D, Sutter E, and Tajnai J. Photobiological safety of lamps and lamp systems[S]. CIE S 009/E:2002.
  10. C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
    [PubMed]
  11. Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
    [Crossref]
  12. W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
    [PubMed]
  13. W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
    [Crossref] [PubMed]
  14. T. G. Gorgels and D. van Norren, “Ultraviolet and green light cause different types of damage in rat retina,” Invest. Ophthalmol. Vis. Sci. 36(5), 851–863 (1995).
    [PubMed]
  15. W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
    [Crossref] [PubMed]
  16. P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
    [Crossref] [PubMed]
  17. P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
    [Crossref] [PubMed]
  18. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
    [Crossref] [PubMed]
  19. G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
    [Crossref] [PubMed]
  20. J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
    [Crossref] [PubMed]
  21. K. Baczynska and L. L. A. Price, “Efficacy and ocular safety of bright light therapy lamps,” Light. Res. Technol. 45(1), 40–51 (2013).
    [Crossref]
  22. R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
    [Crossref]
  23. M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
    [Crossref]
  24. L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
    [Crossref]
  25. Lund D J, Marshall J, Mellerio J, Okuno T, Schulmeister K, Sliney D, Söderberg P, Stuck B, Van Norren D, and Zuclich J. A computerized approach to transmission and absorption characteristics of the human eye[S]. CIE 203, 2012.

2017 (2)

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

2016 (4)

Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24(18), 20049–20059 (2016).
[Crossref] [PubMed]

J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
[Crossref] [PubMed]

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
[Crossref]

2015 (2)

R. G. Stevens and Y. Zhu, “Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140120 (2015).
[Crossref] [PubMed]

K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
[Crossref] [PubMed]

2014 (3)

L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
[Crossref]

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
[Crossref]

2013 (2)

K. Baczynska and L. L. A. Price, “Efficacy and ocular safety of bright light therapy lamps,” Light. Res. Technol. 45(1), 40–51 (2013).
[Crossref]

C. A. Czeisler, “Perspective: casting light on sleep deficiency,” Nature 497(7450), S13 (2013).
[Crossref] [PubMed]

2012 (1)

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

2011 (2)

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
[Crossref] [PubMed]

2006 (1)

P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
[Crossref] [PubMed]

2002 (1)

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

2001 (2)

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

1995 (1)

T. G. Gorgels and D. van Norren, “Ultraviolet and green light cause different types of damage in rat retina,” Invest. Ophthalmol. Vis. Sci. 36(5), 851–863 (1995).
[PubMed]

1976 (1)

W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
[Crossref] [PubMed]

1966 (1)

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

Albert, D. M.

P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
[Crossref] [PubMed]

Algvere, P. V.

P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
[Crossref] [PubMed]

Amundadottir, M. L.

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Andersen, M.

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Aries, M. B. C.

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

Armstrong, D.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Baczynska, K.

K. Baczynska and L. L. A. Price, “Efficacy and ocular safety of bright light therapy lamps,” Light. Res. Technol. 45(1), 40–51 (2013).
[Crossref]

Barbato, G.

L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
[Crossref]

L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
[Crossref]

Bellia, L.

L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
[Crossref]

L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
[Crossref]

Berman, S.

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

Berson, D. M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Bierman, A.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

Brainard, G. C.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Brown, T.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Byrne, B.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Cai, W.

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

Cui, Z.

Czeisler, C. A.

C. A. Czeisler, “Perspective: casting light on sleep deficiency,” Nature 497(7450), S13 (2013).
[Crossref] [PubMed]

Dai, Q.

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24(18), 20049–20059 (2016).
[Crossref] [PubMed]

Dawson, W.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Dunn, F. A.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Enezi, J.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Feng, R.

R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
[Crossref]

Figueiro, M. G.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

Fukuda, S.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Gaston, K. J.

K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
[Crossref] [PubMed]

Gerner, E.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Glickman, G.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Gorgels, T. G.

T. G. Gorgels and D. van Norren, “Ultraviolet and green light cause different types of damage in rat retina,” Invest. Ophthalmol. Vis. Sci. 36(5), 851–863 (1995).
[PubMed]

Greeson, J. M.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Ham, W. T.

W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
[Crossref] [PubMed]

Hamner, R.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

Hanifin, J. P.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Hao, L.

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

Q. Dai, Q. Shan, H. Lam, L. Hao, Y. Lin, and Z. Cui, “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting,” Opt. Express 24(18), 20049–20059 (2016).
[Crossref] [PubMed]

Hölker, F.

K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
[Crossref] [PubMed]

Hope, M.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Huang, Q. Y.

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

Kang, B. S.

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

Khademagha, P.

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

Khazova, M.

J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
[Crossref] [PubMed]

Koide, R.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Lam, H.

Lin, Y.

Lucas, R.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Marshall, J.

P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
[Crossref] [PubMed]

Matsuishi, M.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Mueller, H. A.

W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
[Crossref] [PubMed]

Nakanishi-Ueda, T.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Noell, W. K.

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

O’Hagan, J. B.

J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
[Crossref] [PubMed]

Ozawa, T.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Pedace, A.

L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
[Crossref]

L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
[Crossref]

Price, L. L.

J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
[Crossref] [PubMed]

Price, L. L. A.

K. Baczynska and L. L. A. Price, “Efficacy and ocular safety of bright light therapy lamps,” Light. Res. Technol. 45(1), 40–51 (2013).
[Crossref]

Rea, M. S.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

Reitze, D.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Revell, V.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Rockcastle, S.

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Rollag, M. D.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Rosemann, A. L. P.

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

Samuelson, D.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Sarey Khanie, M.

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Schlangen, L.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Seregard, S.

P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
[Crossref] [PubMed]

Shan, Q.

Sheibani, N.

P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
[Crossref] [PubMed]

Shen, C. Y.

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

Shi, W.

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

Sliney, D. H.

W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
[Crossref] [PubMed]

Stevens, R. G.

R. G. Stevens and Y. Zhu, “Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140120 (2015).
[Crossref] [PubMed]

Takao, M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Ueda, T.

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

van Loenen, E. J.

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

van Norren, D.

T. G. Gorgels and D. van Norren, “Ultraviolet and green light cause different types of damage in rat retina,” Invest. Ophthalmol. Vis. Sci. 36(5), 851–863 (1995).
[PubMed]

Visser, M. E.

K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
[Crossref] [PubMed]

Walker, V. S.

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

Wei, M.

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

Wynne, J.

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

Xu, A.

R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
[Crossref]

Xu, Z.

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

Youssef, P. N.

P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
[Crossref] [PubMed]

Zhao, S. L.

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

Zhu, X.

R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
[Crossref]

Zhu, Y.

R. G. Stevens and Y. Zhu, “Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140120 (2015).
[Crossref] [PubMed]

Acta Ophthalmol. Scand. (1)

P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmol. Scand. 84(1), 4–15 (2006).
[Crossref] [PubMed]

Build. Environ. (4)

Q. Dai, W. Cai, W. Shi, L. Hao, and M. Wei, “A proposed lighting-design space: circadian effect versus visual illuminance,” Build. Environ. 122, 287–293 (2017).
[Crossref]

P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ. 108, 263–272 (2016).
[Crossref]

L. Bellia, A. Pedace, and G. Barbato, “Daylighting offices: a first step toward an analysis of photobiological effects for design practice purposes,” Build. Environ. 74, 54–64 (2014).
[Crossref]

M. L. Amundadottir, S. Rockcastle, M. Sarey Khanie, and M. Andersen, “A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior,” Build. Environ. 113, 5–21 (2017).
[Crossref]

Exp. Eye Res. (1)

W. Dawson, T. Nakanishi-Ueda, D. Armstrong, D. Reitze, D. Samuelson, M. Hope, S. Fukuda, M. Matsuishi, T. Ozawa, T. Ueda, and R. Koide, “Local fundus response to blue (LED and laser) and infrared (LED and laser) sources,” Exp. Eye Res. 73(1), 137–147 (2001).
[Crossref] [PubMed]

Eye (Lond.) (2)

P. N. Youssef, N. Sheibani, and D. M. Albert, “Retinal light toxicity,” Eye (Lond.) 25(1), 1–14 (2011).
[Crossref] [PubMed]

J. B. O’Hagan, M. Khazova, and L. L. Price, “Low-energy light bulbs, computers, tablets and the blue light hazard,” Eye (Lond.) 30(2), 230–233 (2016).
[Crossref] [PubMed]

Faguang Xuebao (1)

R. Feng, A. Xu, and X. Zhu, “Change of the circadian effect of LED lighting with age,” Faguang Xuebao 37(2), 250–255 (2016).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

C. Y. Shen, Z. Xu, S. L. Zhao, and Q. Y. Huang, “Study on the safety of blue light leak of LED,” Guangpuxue Yu Guangpu Fenxi 34(2), 316–321 (2014).
[PubMed]

Invest. Ophthalmol. (1)

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5(5), 450–473 (1966).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

T. G. Gorgels and D. van Norren, “Ultraviolet and green light cause different types of damage in rat retina,” Invest. Ophthalmol. Vis. Sci. 36(5), 851–863 (1995).
[PubMed]

J. Biol. Rhythms (1)

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26(4), 314–323 (2011).
[Crossref] [PubMed]

J. Neurosci. (1)

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[Crossref] [PubMed]

Light. Res. Technol. (3)

K. Baczynska and L. L. A. Price, “Efficacy and ocular safety of bright light therapy lamps,” Light. Res. Technol. 45(1), 40–51 (2013).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

L. Bellia, A. Pedace, and G. Barbato, “Indoor artificial lighting: Prediction of the circadian effects of different spectral power distributions,” Light. Res. Technol. 46(6), 650–660 (2014).
[Crossref]

Nature (2)

W. T. Ham, H. A. Mueller, and D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260(5547), 153–155 (1976).
[Crossref] [PubMed]

C. A. Czeisler, “Perspective: casting light on sleep deficiency,” Nature 497(7450), S13 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (2)

R. G. Stevens and Y. Zhu, “Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140120 (2015).
[Crossref] [PubMed]

K. J. Gaston, M. E. Visser, and F. Hölker, “The biological impacts of artificial light at night: the research challenge,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1667), 20140133 (2015).
[Crossref] [PubMed]

Science (1)

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Other (2)

Bergman R S, Barling L, Bouman A, Drop P, Goodman T, Hietanen M, Ikai Y, Kohmoto K, Kotschenreuther R, Levin R, Masuda T, Riedmann W, Schulmeister K, Sliney D, Sutter E, and Tajnai J. Photobiological safety of lamps and lamp systems[S]. CIE S 009/E:2002.

Lund D J, Marshall J, Mellerio J, Okuno T, Schulmeister K, Sliney D, Söderberg P, Stuck B, Van Norren D, and Zuclich J. A computerized approach to transmission and absorption characteristics of the human eye[S]. CIE 203, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Response functions of human eyes to visible light
Fig. 2
Fig. 2 The spectral transmittances of different ages human eye
Fig. 3
Fig. 3 Normalized spectral of LED backlight displayer under different color temperature
Fig. 4
Fig. 4 Significant spectral on the retina of different ages of LED backlight displayer under different color temperature
Fig. 5
Fig. 5 Blue light hazard of LED backlight displayer change with color temperature for different ages (a: blue light hazard factor change with color temperature; b: 400-500nm blue light ratio change with color temperature)
Fig. 6
Fig. 6 Blue light hazard of LED backlight displayer change with ages for different color temperature (a:blue light hazard factor change with ages;b:400-500nm blue light ratio change with ages)
Fig. 7
Fig. 7 Circadian effect of LED backlight displayer change with color temperature for different ages (a:Circadian factor change with color temperature; b:446-477 nm blue light ratio change with color temperature)
Fig. 8
Fig. 8 Circadian effect of LED backlight displayer change with ages for different color temperature (a:Circadian factor change with ages; b:446-477 nm blue light ratio change with ages)

Tables (2)

Tables Icon

Table 1 Fitting results of human eyes response functions

Tables Icon

Table 2 The calculation results of parameters of LED backlight displayer under different color temperature

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S P = 1700 380 780 P ( λ ) V ' ( λ ) d λ 683 380 780 P ( λ ) V ( λ ) d λ
K B = 380 780 p ( λ ) B ( λ ) d λ K m 380 780 p ( λ ) v ( λ ) d λ
K C = K ' m 380 780 p ( λ ) c ( λ ) d λ K m 380 780 p ( λ ) v ( λ ) d λ
V ( λ ) = 3.659 × 10 4 + 1.182 1 + exp ( 32.651 λ / 15.731 ) [ 1 1 1 + exp ( 24.558 λ / 20.915 ) ]
V ' ( λ ) = 4.9 × 10 3 + 1.182 1 + exp ( 23.312 λ / 19.803 ) [ 1 1 1 + exp ( 28.712 λ / 16.081 ) ]
C ( λ ) = 0.014 + 1.741 1 + exp ( 14.397 λ / 30.582 ) [ 1 1 1 + exp ( 24.824 λ / 17.736 ) ]
B ( λ ) = 6.737 × 10 4 + 0.2361 exp [ ( λ 416.136 ) 2 20.276 ] + 0.4443 exp [ ( λ 423.378 ) 2 215.925 ] + 0.8606 exp [ ( λ 447.663 ) 2 804.406 ] + 0.1505 exp [ ( λ 480.662 ) 2 118.811 ] + 0.0908 exp [ ( λ 471.588 ) 2 2697.525 ]
R B = 400 500 P ( λ ) d ( λ ) 380 780 P ( λ ) d ( λ )
R C = 446 477 P ( λ ) d ( λ ) 380 780 P ( λ ) d ( λ )
D τ ( λ ) = 0.06 + ( 0.15 + 3.1 × 10 5 a 2 ) ( 400 / λ ) 4 + 151.5492 exp { [ 0.057 ( λ 273 ) ] 2 } + 2.13 × ( 1.05 6.3 × 10 5 a 2 ) exp { [ 0.029 ( λ 370 ) ] 2 } + 11 .95 × ( 0.059 + 1.8610 4 a 2 ) × exp { [ 0.021 ( λ 325 ) ] 2 } + 1.43 × ( 0.016 + 1.32 × 10 4 a 2 ) exp { [ 0.008 ( λ 325 ) ] 2 }
τ ( λ ) = 10 D τ ( λ )

Metrics