Abstract

A facile strategy to prepare high-quality colloidal photonic crystals (PCs) with good visibility is proposed. Based on a high refractive-index material (zinc sulfide), highly monodispersed colloidal particles are successfully produced and assembled into long-range ordered crystalline colloidal arrays. The carbon-based materials are in situ incorporated with the long-range ordered colloidal PCs, which endows PCs with the combined characteristics to simultaneously achieve an intense photonic stop band and excellent control of incoherent light scattering. Owing to these merits, the obtained ZnS colloidal PCs have demonstrated strong brightness with the maximum reflectivity of 98%. Moreover, the coloration, saturation, and viewing angle are all improved. This study provides a straightforward and cost-effective strategy to create structural colors with high-quality visibility, which is expected to facilitate future applications of colloidal PCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust polymer colloidal crystal photonic bandgap structures

Stephen H. Foulger, Sanjay Kotha, Beata Sweryda-Krawiec, Travis W. Baughman, John M. Ballato, Ping Jiang, and Dennis W. Smith
Opt. Lett. 25(17) 1300-1302 (2000)

Imitation of variable structural color in paracheirodon innesi using colloidal crystal films

Hailin Cong, Bing Yu, and Xiu Song Zhao
Opt. Express 19(13) 12799-12808 (2011)

Large-area flexible colloidal photonic crystal film stickers for light trapping applications

Tomas Kohoutek, Mikhail Parchine, Maria Bardosova, Hiroshi Fudouzi, and Martyn Pemble
Opt. Mater. Express 8(4) 960-967 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [Crossref] [PubMed]
  2. L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
    [Crossref]
  3. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [Crossref] [PubMed]
  4. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
    [Crossref]
  5. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  6. H. Iu, J. Li, H. C. Ong, and J. T. K. Wan, “Surface plasmon resonance in two-dimensional nanobottle arrays,” Opt. Express 16(14), 10294–10302 (2008).
    [Crossref] [PubMed]
  7. J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
    [Crossref] [PubMed]
  8. J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
    [Crossref] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  10. K. Busch and S. John, “Liquid-crystal photonic-band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
    [Crossref]
  11. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electron. 4(7), 861–871 (1975).
  12. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
    [Crossref] [PubMed]
  13. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [Crossref]
  14. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  15. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [Crossref] [PubMed]
  16. J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
    [Crossref] [PubMed]
  17. F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
    [Crossref] [PubMed]
  18. P. V. Braun and P. Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402(6762), 603–604 (1999).
    [Crossref]
  19. G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
    [Crossref]
  20. J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. Engl. 50(7), 1492–1522 (2011).
    [Crossref] [PubMed]
  21. X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
    [Crossref] [PubMed]
  22. H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [Crossref]
  23. J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
    [Crossref]
  24. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
    [Crossref]
  25. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
    [Crossref] [PubMed]
  26. E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
    [Crossref] [PubMed]
  27. D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
    [Crossref] [PubMed]
  28. C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
    [Crossref] [PubMed]
  29. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
    [Crossref]
  30. B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
    [Crossref]
  31. C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
    [Crossref] [PubMed]
  32. L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
    [Crossref]
  33. S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
    [Crossref] [PubMed]
  34. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
    [Crossref]
  35. U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
    [Crossref] [PubMed]
  36. C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
    [Crossref] [PubMed]
  37. M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
    [Crossref] [PubMed]
  38. X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
    [Crossref] [PubMed]
  39. M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
    [Crossref]
  40. Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
    [Crossref] [PubMed]
  41. Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
    [Crossref]
  42. Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
    [Crossref]
  43. W. Park and C. J. Summers, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  44. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  45. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, “Temperature dependence of the refractive index in semiconductors,” J. Opt. Soc. Am. B 7(6), 918–922 (1990).
    [Crossref]
  46. X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
    [Crossref] [PubMed]
  47. D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
    [Crossref]
  48. X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
    [Crossref] [PubMed]

2017 (2)

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

2016 (6)

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
[Crossref]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
[Crossref] [PubMed]

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

2015 (2)

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

W. Park and C. J. Summers, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

2013 (2)

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

2012 (2)

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

2011 (3)

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. Engl. 50(7), 1492–1522 (2011).
[Crossref] [PubMed]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

2010 (1)

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

2009 (5)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

2008 (3)

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

H. Iu, J. Li, H. C. Ong, and J. T. K. Wan, “Surface plasmon resonance in two-dimensional nanobottle arrays,” Opt. Express 16(14), 10294–10302 (2008).
[Crossref] [PubMed]

2007 (3)

J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
[Crossref] [PubMed]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[Crossref]

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

2005 (1)

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2001 (3)

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[Crossref]

2000 (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

1999 (4)

P. V. Braun and P. Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402(6762), 603–604 (1999).
[Crossref]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

K. Busch and S. John, “Liquid-crystal photonic-band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

1998 (4)

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

1990 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1975 (1)

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electron. 4(7), 861–871 (1975).

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Aguirre, C. I.

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

Bertolotti, M.

Biró, L. P.

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

Biswas, R.

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Blanford, C. F.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Bogdanov, V.

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Bonifacio, L. D.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
[Crossref] [PubMed]

Braun, P. V.

P. V. Braun and P. Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402(6762), 603–604 (1999).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Busch, K.

K. Busch and S. John, “Liquid-crystal photonic-band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

Bykov, V. P.

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electron. 4(7), 861–871 (1975).

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Cao, H.

Chang, J.

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Cheng, B.

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

Cho, Y.

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Choi, S.-e.

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Constant, K.

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Dahl, M.

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

Dang, S.

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Dufresne, E. R.

Dyck, J.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Ferrari, A.

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Forster, J.

Gallei, M.

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

Gates, B.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Ge, D.

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Ge, J.

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. Engl. 50(7), 1492–1522 (2011).
[Crossref] [PubMed]

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
[Crossref] [PubMed]

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

Gianola, D. S.

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Goebl, J.

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

Han, M. G.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

He, L.

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

Hellmann, G. P.

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[Crossref]

Heo, C. J.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Ho, K. M.

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Holland, B. T.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Hu, Y.

J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
[Crossref] [PubMed]

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

Huang, B.

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

Iu, H.

Jascow, A.

Jeon, S. J.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Jeong, U.

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

Jin, H.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

Joo, J. B.

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

Kim, H.

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kim, J.

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kim, J. U.

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

Kim, J. W.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Krasavin, A. V.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Kretschmer, K.

D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
[Crossref]

Kuroda, K.

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Kwon, S.

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, E.

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Lee, H.

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, S.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Li, J.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

H. Iu, J. Li, H. C. Ong, and J. T. K. Wan, “Surface plasmon resonance in two-dimensional nanobottle arrays,” Opt. Express 16(14), 10294–10302 (2008).
[Crossref] [PubMed]

Li, M.

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Li, Z. Y.

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

Liao, Z.

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

Liew, S. F.

Lin, L.

J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Liu, L.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Lotsch, B. V.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Lu, X.

Lu, Y.

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[Crossref]

Lu, Z.

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

Mayer, T. S.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Mori, S.

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

Namin, F. A.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Nazorova, N.

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Noh, H.

O’Hern, C. S.

Ong, H. C.

Ozin, G. A.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Panaretos, A. H.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Park, W.

W. Park and C. J. Summers, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Pikhtin, A.

Prum, R. O.

Pursiainen, O. L. J.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

Puzzo, D. P.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Reguera, E.

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

Rehahn, M.

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

Richards, D.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Ruhl, T.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Saranathan, V.

Schäfer, C. G.

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

Schirone, L.

Schreck, C. F.

Scotognella, F.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Segovia, P.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Shim, H.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Shimojima, A.

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

Shin, C. G.

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

Sigalas, M. M.

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Smolin, D. A.

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

Spahn, P.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Stein, A.

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Su, D.

D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
[Crossref]

Su, X.

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Subramania, G.

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

Summers, C. J.

W. Park and C. J. Summers, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Sun, Y.

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

Tang, B.

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Torres, R. H.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Viel, B.

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[Crossref]

Vigneron, J. P.

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

Vos, W. L.

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wada, H.

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

Wan, J. T. K.

Wang, G.

D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
[Crossref]

Webster, L.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Werner, D. H.

J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
[Crossref] [PubMed]

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref] [PubMed]

Williamson, S.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Wiltzius, P.

P. V. Braun and P. Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402(6762), 603–604 (1999).
[Crossref]

Winkler, H.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

Wu, G.

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

Wu, S.

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Xia, H.

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

Xia, Y.

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[Crossref]

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, E.

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yang, L.

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

Yang, S.

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Yang, X.

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

Yin, Y.

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. Engl. 50(7), 1492–1522 (2011).
[Crossref] [PubMed]

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
[Crossref] [PubMed]

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[Crossref]

Yu, J.

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

Yu, X.

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

Yuwen, Y. A.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Zayats, A. V.

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Zhang, Q.

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

Zhang, S.

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Zhang, T.

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

ACS Appl. Mater. Interfaces (3)

C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, “Thermo-cross-linked elastomeric opal films,” ACS Appl. Mater. Interfaces 5(21), 10623–10632 (2013).
[Crossref] [PubMed]

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

X. Yang, D. Ge, G. Wu, Z. Liao, and S. Yang, “Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles,” ACS Appl. Mater. Interfaces 8(25), 16289–16295 (2016).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

D. Su, K. Kretschmer, and G. Wang, “Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres,” Adv. Energy Mater. 6(2), 1501785 (2016).
[Crossref]

Adv. Mater. (6)

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008).
[Crossref]

Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[Crossref]

M. G. Han, C. G. Shin, S. J. Jeon, H. Shim, C. J. Heo, H. Jin, J. W. Kim, and S. Lee, “Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band,” Adv. Mater. 24(48), 6438–6444 (2012).
[Crossref] [PubMed]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin, “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009).
[Crossref]

D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, and S. Yang, “A robust smart window: reversibly switching from high transparency to angle-independent structural color display,” Adv. Mater. 27(15), 2489–2495 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. Engl. 50(7), 1492–1522 (2011).
[Crossref] [PubMed]

J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem. Int. Ed. Engl. 46(39), 7428–7431 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933–3935 (1999).
[Crossref]

W. Park and C. J. Summers, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Chem. Mater. (1)

B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007).
[Crossref]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Chemistry (1)

X. Yu, J. Yu, B. Cheng, and B. Huang, “One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties,” Chemistry 15(27), 6731–6739 (2009).
[Crossref] [PubMed]

CrystEngComm (1)

M. Dahl, S. Dang, J. B. Joo, Q. Zhang, and Y. Yin, “Control of the crystallinity in TiO2 microspheres through silica impregnation,” CrystEngComm 14(22), 7680–7685 (2012).
[Crossref]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

J. R. Soc. Interface (1)

J. A. Bossard, L. Lin, and D. H. Werner, “Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13(114), 20150975 (2016).
[Crossref] [PubMed]

Langmuir (2)

C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, “Fully reversible shape transition of soft spheres in elastomeric polymer opal films,” Langmuir 29(36), 11275–11283 (2013).
[Crossref] [PubMed]

Y. Lu, Y. Yin, B. Gates, and Y. Xia, “Crowth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods,” Langmuir 17(20), 6344–6350 (2001).
[Crossref]

Laser Photonics Rev. (1)

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

Nano Lett. (2)

Y. Hu, J. Ge, Y. Sun, T. Zhang, and Y. Yin, “A self-templated approach to TiO2 microcapsules,” Nano Lett. 7(6), 1832–1836 (2007).
[Crossref] [PubMed]

U. Jeong, J. U. Kim, Y. Xia, and Z. Y. Li, “Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals,” Nano Lett. 5(5), 937–942 (2005).
[Crossref] [PubMed]

Nanoscale (3)

X. Su, H. Xia, S. Zhang, B. Tang, and S. Wu, “Vivid structural colors with low angle dependence from long-range ordered photonic crystal films,” Nanoscale 9(9), 3002–3009 (2017).
[Crossref] [PubMed]

E. Yamamoto, S. Mori, A. Shimojima, H. Wada, and K. Kuroda, “Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method,” Nanoscale 9(7), 2464–2470 (2017).
[Crossref] [PubMed]

X. Su, J. Chang, S. Wu, B. Tang, and S. Zhang, “Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color,” Nanoscale 8(11), 6155–6161 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Nature (5)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

P. V. Braun and P. Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402(6762), 603–604 (1999).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[Crossref]

Phys. Rev. B (1)

G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, “Structural characterization of thin film photonic crystals,” Phys. Rev. B 63(23), 235111 (2001).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

K. Busch and S. John, “Liquid-crystal photonic-band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

Quantum Electron. (1)

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electron. 4(7), 861–871 (1975).

Sci. Rep. (2)

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

J. Li, A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats, and D. Richards, “Spectral variation of fluorescence lifetime near single metal nanoparticles,” Sci. Rep. 6(1), 21349 (2016).
[Crossref] [PubMed]

Science (4)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustrating the procedure for preparing long-range ordered ZnS@SiO2 colloidal PCs.
Fig. 2
Fig. 2 TEM images of as-prepared ZnS monodispersed particles prepared with reaction times of (a) 30 min, (b) 60 min, (c) 90 min, (d) 120 min, (e) 150 min, and (f) 180 min.
Fig. 3
Fig. 3 (a) Colloidal ZnS nanospheres. (b) Silica-coated ZnS. (c) Silica-coated ZnS treated at 600 °C. (d, f) Silica-coated ZnS treated at 600 °C with surface treatment. (e) Annealed ZnS nanospheres with complete surface etching.
Fig. 4
Fig. 4 (a) XRD patterns of ZnS@SiO2 nanospheres prepared with different calcination temperatures. (b) XPS measurements for the ZnS@SiO2-600 with Ar ion sputtering (2 keV) for 60 seconds.
Fig. 5
Fig. 5 (a) HAADF-STEM image of ZnS nanospheres. (b-f)EDS elemental mapping of ZnS nanospheres.
Fig. 6
Fig. 6 (a, b) Cross-sectional view of a 3D opaline lattice of 190 nm ZnS@SiO2-600; (c) Experimental reflectance spectra of 130 nm ZnS@SiO2 colloidal nanospheres calcined at different temperatures.
Fig. 7
Fig. 7 TEM image of the ZnS@SiO2-800 sample.
Fig. 8
Fig. 8 (a) Photographs of PCs comprised of calcined ZnS@SiO2-600 colloids assembled in a cell with different particle diameters of 130 nm (blue), 160 nm (green), and 190 nm (red); (b) the measured reflection spectra from assembled 3D ZnS@SiO2-600 colloidal PCs exhibiting strong reflectivity red (90%), green (98%) and blue (90%).
Fig. 9
Fig. 9 Photographs of a crystalline array observed from (a) ∼5 ° and (b) ∼30 °.

Tables (1)

Tables Icon

Table 1 Zeta-potential and diameter of ZnS and ZnS@SiO2 nanospheres treated at different calcination temperatures and partial surface etching

Metrics