Abstract

We propose an optically controlled tunable ultra-narrow linewidth fiber laser assisted with the mode selection induced by a saturable absorption interference ring and linewidth narrowing of fiber Rayleigh backscattering (RBS). The interference ring serves as an artificial narrow-band filter, which conduces to the laser operating at a single-frequency state. To realize narrower linewidths, additional single-mode fiber is utilized to accumulate a weak RBS feedback. On basis of inherent wavelength universality of this linewidth-narrowing mechanism, an all-optical technique is employed to enable linear and stable tunability of the laser. Cooperating with a micro-fiber Bragg grating covered by graphene, the lasing wavelength is tuned precisely and reversibly with a sensitivity of 12.4 pm/mW and a linear fitting R2 over 0.997 by changing the power of a controlling beam. During a stability test with the controlling pump power fixed, the long-term free-running power fluctuation is less than 0.5%. The Output laser linewidth is compressed to be ~200 Hz, which is also confirmed by the descending frequency noise spectrum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering

Tao Zhu, Baomei Zhang, Leilei Shi, Shihong Huang, Ming Deng, Jianguo Liu, and Xiong Li
Opt. Express 24(2) 1324-1330 (2016)

Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter

Bin Yin, Suchun Feng, Zhibo Liu, Yunlong Bai, and Shuisheng Jian
Opt. Express 22(19) 22528-22533 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
    [Crossref]
  2. A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21(24), 29744–29754 (2013).
    [Crossref] [PubMed]
  3. J. Li, J. Gan, Z. Zhang, X. Heng, C. Yang, Q. Qian, S. Xu, and Z. Yang, “High spatial resolution distributed fiber strain sensor based on phase-OFDR,” Opt. Express 25(22), 27913–27922 (2017).
    [Crossref] [PubMed]
  4. H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
    [Crossref]
  5. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [Crossref] [PubMed]
  6. W. Fan, J. Gan, Z. Zhang, X. Wei, S. Xu, and Z. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
    [Crossref] [PubMed]
  7. Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
    [Crossref]
  8. C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [Crossref] [PubMed]
  9. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179–2183 (2006).
    [Crossref]
  10. Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lightwave Technol. 35(9), 1744–1749 (2017).
    [Crossref]
  11. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. Digiovanni, “Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers,” Opt. Lett. 18(24), 2108–2110 (1993).
    [Crossref] [PubMed]
  12. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
    [Crossref] [PubMed]
  13. T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
    [Crossref]
  14. N. Libatique, L. Wang, and R. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10(25), 1503–1507 (2002).
    [Crossref] [PubMed]
  15. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
    [Crossref]
  16. J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).
  17. N. Yan, X. Han, P. Chang, L. Huang, F. Gao, X. Yu, W. Zhang, Z. Zhang, G. Zhang, and J. Xu, “Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach-Zehnder interferometer,” Opt. Express 25(22), 27609–27615 (2017).
    [Crossref] [PubMed]
  18. M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
    [Crossref]
  19. X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
    [Crossref]
  20. T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
    [Crossref] [PubMed]
  21. N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
    [Crossref]
  22. X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
    [Crossref] [PubMed]
  23. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
    [Crossref] [PubMed]
  24. J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
    [Crossref]
  25. Y. S. Thirstrun and B. Phlsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fibers,” J. Lightwave Technol. 14(5), 732–738 (1996).
    [Crossref]
  26. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  27. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley& Sons, 1994).
  28. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  29. M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23(5), 6803–6808 (2015).
    [Crossref] [PubMed]
  30. L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
    [Crossref]
  31. O. Llopis, P. H. Merrer, H. Brahimi, K. Saleh, and P. Lacroix, “Phase noise measurement of a narrow linewidth CW laser using delay line approaches,” Opt. Lett. 36(14), 2713–2715 (2011).
    [Crossref] [PubMed]

2018 (1)

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

2017 (5)

2016 (2)

2015 (2)

M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23(5), 6803–6808 (2015).
[Crossref] [PubMed]

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

2014 (2)

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2008 (3)

Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
[Crossref]

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

2002 (1)

2001 (1)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

2000 (1)

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

1998 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1996 (2)

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Y. S. Thirstrun and B. Phlsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fibers,” J. Lightwave Technol. 14(5), 732–738 (1996).
[Crossref]

1993 (1)

1986 (1)

L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
[Crossref]

Andrés, M.

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

Bakar, M.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, X.

Bober, M.

Brahimi, H.

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Chang, P.

Chen, D.

Chen, J.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Chen, L.

Chen, M.

Chen, W.

Chen, Y. K.

Cheng, X.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Chiang, K.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Ciurylo, R.

Clements, W.

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Cruz, J.

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

Cygan, A.

Delgado-Pinar, M.

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

Díez, A.

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

Digiovanni, D. J.

Ding, D.

Dong, Y.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fan, W.

Fan, X.

Fang, L.

Feinberg, J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Feng, T.

Feng, Z.

Fischer, B.

Fujiwara, N.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Gan, J.

Gan, X.

Gao, F.

Ge, S.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Guo, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Halip, N.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Han, X.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Heng, X.

Hu, Z.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

Huang, L.

Huang, S.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Huang, W.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Huang, X.

Ishii, H.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Ito, F.

Itoh, M.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Jain, R.

Jiang, B.

Kanazawa, S.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Kasai, K.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Koshikiya, Y.

Kruger, H. I. S.

L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
[Crossref]

Lacroix, P.

Latif, A.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Lee, C. C.

Li, C.

Li, D.

Li, F.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

Li, J.

Liang, H.

Liaw, S. K.

Libatique, N.

Lisak, D.

Lit, J.

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Liu, M.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Liu, Y.

Llopis, O.

Lu, Y.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Mahdi, M.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Mansoor, A.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Mcgrath, P. A.

L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
[Crossref]

Meng, Z.

Merrer, P. H.

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Miyamoto, Y.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Mo, S.

Mora, J.

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

Morzynski, P.

Nakazawa, M.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Omar, N.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Pan, Z.

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

Pazderski, E.

Phlsdottir, B.

Y. S. Thirstrun and B. Phlsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fibers,” J. Lightwave Technol. 14(5), 732–738 (1996).
[Crossref]

Qian, Q.

Rashid, H.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Ren, Z.

Richer, L. E.

L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
[Crossref]

Saleh, K.

Schim, G.

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Shao, G.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Sharif, K.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Shi, L.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Shum, P.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Stewart, G.

Su, H.

Sulhoff, J. W.

Takenouchi, H.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Tan, W.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

Tang, M.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Thirstrun, Y. S.

Y. S. Thirstrun and B. Phlsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fibers,” J. Lightwave Technol. 14(5), 732–738 (1996).
[Crossref]

Tong, L.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Tse, C.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Wang, J.

Wang, L.

Wang, Y.

Watanabe, K.

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

Wei, X.

Whitenett, G.

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Wu, H.

Wu, R.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Wu, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Xu, F.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Xu, J.

Xu, S.

Yan, F.

Yan, N.

Yang, C.

Yang, Z.

Yao, X. S.

Yasin, S.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Yu, S.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Yu, X.

Yue, C.

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Zawada, M.

Zhang, F.

Zhang, G.

Zhang, J.

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lightwave Technol. 35(9), 1744–1749 (2017).
[Crossref]

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

Zhang, M.

Zhang, W.

Zhang, Z.

Zhao, C.

Zhao, J.

Zhao, Z.

Zheng, B.

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Zhou, J.

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Zhu, T.

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
[Crossref] [PubMed]

Zulkifli, M.

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Zyskind, J. L.

Adv. Mater. (1)

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Chin. Sci. Bull. (1)

T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow linewidth tunable DFB laser array integrated with optical feedback planar lightwave circuit (PLC),” IEEE J. Sel. Top. Quantum Electron. 23(6), 1501007 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Z. Hu, F. Li, Z. Pan, and W. Tan, “Wavelength-tunable narrow-Linewidth semiconductor fiber-ring Laser,” IEEE Photonics Technol. Lett. 12(8), 977–979 (2000).
[Crossref]

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-Wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

J. Zhang, C. Yue, G. Schim, W. Clements, and J. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(1), 104–109 (1996).

M. Delgado-Pinar, J. Mora, A. Díez, J. Cruz, and M. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technol. Lett. 17(3), 552–554 (2005).
[Crossref]

X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, “Single-longitudinal-lode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

J. Lightwave Technol. (5)

Light Sci. Appl. (1)

J. Chen, B. Zheng, G. Shao, S. Ge, F. Xu, and Y. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Nano Lett. (1)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Opt. Express (7)

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
[Crossref] [PubMed]

N. Yan, X. Han, P. Chang, L. Huang, F. Gao, X. Yu, W. Zhang, Z. Zhang, G. Zhang, and J. Xu, “Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach-Zehnder interferometer,” Opt. Express 25(22), 27609–27615 (2017).
[Crossref] [PubMed]

J. Li, J. Gan, Z. Zhang, X. Heng, C. Yang, Q. Qian, S. Xu, and Z. Yang, “High spatial resolution distributed fiber strain sensor based on phase-OFDR,” Opt. Express 25(22), 27913–27922 (2017).
[Crossref] [PubMed]

A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21(24), 29744–29754 (2013).
[Crossref] [PubMed]

M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23(5), 6803–6808 (2015).
[Crossref] [PubMed]

N. Libatique, L. Wang, and R. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10(25), 1503–1507 (2002).
[Crossref] [PubMed]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

N. Halip, M. Bakar, A. Latif, S. Yasin, M. Zulkifli, K. Sharif, N. Omar, A. Mansoor, H. Rashid, and M. Mahdi, “A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser,” Opt. Laser Technol. 101, 413–418 (2018).
[Crossref]

Opt. Lett. (6)

Quan. Electron. Lett. (1)

L. E. Richer, H. I. S. Kruger, and P. A. Mcgrath, “Linewidth determination from self-heterodyne measurement with sucoherence delay times,” Quan. Electron. Lett. 22(11), 2070–2074 (1986).
[Crossref]

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley& Sons, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experimental setup of the optically tunable ultra-narrow linewidth fiber laser; (b) photograph of the graphene-coated micro-FBG (GCMFBG), and the red shadow part is the graphene-coated region. (c) Phonon relaxation process of graphene; (d) red-shifted reflection spectra of the GCMFBG with controlling light powers of 26.8 mW, 64.3 mW, and 101.5 mW.
Fig. 2
Fig. 2 (a) RF spectrum without Rayleigh feedback directly measured by the PD and the corresponding beat-frequency signal measured by the DSHS; (b) RF spectrum with Rayleigh fiber directly measured by PD and the corresponding RF spectrum of the beat-frequency signal.
Fig. 3
Fig. 3 (a) Output RF spectra with Rayleigh fiber with the increment of the attenuation value; (b) time domain of the beat-frequency signal with a SLM operation.
Fig. 4
Fig. 4 (a) Output spectra of the ultra-narrow linewidth laser with the increment of the pump 3; (b) color-corresponded RF spectra during the tuning process; (c) peak wavelengths with changed powers of pump 3 and the linear fitting curve; (d) long-term stability test of the wavelength and output power with a fixed power of pump 3.
Fig. 5
Fig. 5 (a), (b), (c), (d), (e), and (f) Linewidth measurements and Lorentz fitting curves with versus without the RBS feedback under arbitrarily selected controlling pump powers of 0 mW, 41.8 mW and 81.9 mW;
Fig. 6
Fig. 6 (a) Frequency noise spectra of the laser with and without RBS feedback; (b) linewidth measurements with the RBS feedback under different controlling pump powers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( λ , z ) n e f f ( λ ) ¯ 1 + I 0 I s a t cos ( 4 π n e f f ( λ ) ¯ λ z ) ,
Δ f ( λ , Δ n ) Δ n c δ λ 2 n e f f ¯ 2 ( λ ) Δ n 2 + λ 2 L 2 E D F ,

Metrics