Abstract

Efficient coupling between on-chip sources and cavities plays a key role in silicon photonics. However, despite the importance of this basic functionality, there are few systematic design tools to simultaneously control coupling between multiple modes in a compact resonator and a single waveguide. Here, we propose a large-scale adjoint optimization approach to produce wavelength-scale waveguide–cavity couplers operating over tunable and broad frequency bands. We numerically demonstrate couplers discovered by this method that can achieve critical, or nearly critical, coupling between multi-ring cavities and a single waveguide at up to six widely separated wavelengths spanning the 560–1500 nm range of interest for on-chip nonlinear optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Inverse design of near unity efficiency perfectly vertical grating couplers

Andrew Michaels and Eli Yablonovitch
Opt. Express 26(4) 4766-4779 (2018)

Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited]

Chawin Sitawarin, Weiliang Jin, Zin Lin, and Alejandro W. Rodriguez
Photon. Res. 6(5) B82-B89 (2018)

400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators

Alan D. Logan, Michael Gould, Emma R. Schmidgall, Karine Hestroffer, Zin Lin, Weiliang Jin, Arka Majumdar, Fariba Hatami, Alejandro W. Rodriguez, and Kai-Mei C. Fu
Opt. Express 26(26) 33687-33699 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491 (2010).
    [Crossref] [PubMed]
  2. O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” Phys. Rev. Lett. 115, 204302 (2015).
    [Crossref] [PubMed]
  3. A. Arabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Reports 743722 (2017).
  4. C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).
  5. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
    [Crossref]
  6. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
    [Crossref] [PubMed]
  7. F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
    [Crossref]
  8. W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25, 14746–14759 (2017).
    [Crossref] [PubMed]
  9. W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).
  10. D. A. Miller, “Silicon photonics: Meshing optics with applications,” Nat. Photonics 11, 403 (2017).
    [Crossref]
  11. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Rev. 5, 308–321 (2011).
    [Crossref]
  12. J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21, 13351–13367 (2013).
    [Crossref] [PubMed]
  13. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
    [Crossref] [PubMed]
  14. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).
  15. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref] [PubMed]
  16. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
    [Crossref]
  17. Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2d microcavities for nonlinear frequency conversion,” Opt. Lett. 42, 2818–2821 (2017).
    [Crossref] [PubMed]
  18. H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56, 4750–4756 (2017).
    [Crossref] [PubMed]
  19. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  20. T. Fujisawa, S. Makino, T. Sato, and K. Saitoh, “Low-loss, compact, and fabrication-tolerant si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Opt. Express 25, 9150–9159 (2017).
    [Crossref] [PubMed]
  21. V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).
  22. S. Jahani and Z. Jacob, “Photonic skin-depth engineering,” JOSA B 32, 1346–1353 (2015).
    [Crossref]
  23. M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]
  24. J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
    [Crossref]
  25. Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
    [Crossref]
  26. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
    [Crossref]
  27. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191–201 (2017).
    [Crossref] [PubMed]
  28. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref] [PubMed]
  29. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
    [Crossref]
  30. Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
    [Crossref]
  31. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
    [Crossref]
  32. V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22, A1895–A1906 (2014).
    [Crossref]
  33. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
    [Crossref]
  34. S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
    [Crossref]
  35. S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).
  36. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
    [Crossref] [PubMed]
  37. T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15, 7677–7681 (2007).
    [Crossref] [PubMed]
  38. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
    [Crossref]
  39. T. Tiecke, K. Nayak, J. Thompson, T. Peyronel, N. De Leon, V. Vuletić, and M. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
    [Crossref]
  40. A. C. Niederberger, D. A. Fattal, N. R. Gauger, S. Fan, and R. G. Beausoleil, “Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints,” Opt. Express 22, 12971–12981 (2014).
    [Crossref] [PubMed]
  41. R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
    [Crossref]
  42. L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25, 18462–18473 (2017).
    [Crossref] [PubMed]
  43. Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
    [Crossref] [PubMed]
  44. J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).
  45. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref] [PubMed]
  46. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  47. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
    [Crossref] [PubMed]
  48. X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
    [Crossref]
  49. F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
    [Crossref]
  50. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
    [Crossref]
  51. X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
    [Crossref] [PubMed]
  52. M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
    [Crossref]
  53. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
    [Crossref]
  54. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes,” JOSA B 16, 147–154 (1999).
    [Crossref]
  55. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref] [PubMed]
  56. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
    [Crossref] [PubMed]

2018 (1)

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

2017 (15)

W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25, 14746–14759 (2017).
[Crossref] [PubMed]

D. A. Miller, “Silicon photonics: Meshing optics with applications,” Nat. Photonics 11, 403 (2017).
[Crossref]

A. Arabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Reports 743722 (2017).

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2d microcavities for nonlinear frequency conversion,” Opt. Lett. 42, 2818–2821 (2017).
[Crossref] [PubMed]

H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56, 4750–4756 (2017).
[Crossref] [PubMed]

T. Fujisawa, S. Makino, T. Sato, and K. Saitoh, “Low-loss, compact, and fabrication-tolerant si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Opt. Express 25, 9150–9159 (2017).
[Crossref] [PubMed]

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191–201 (2017).
[Crossref] [PubMed]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
[Crossref]

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25, 18462–18473 (2017).
[Crossref] [PubMed]

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

2016 (6)

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
[Crossref] [PubMed]

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

2015 (5)

O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” Phys. Rev. Lett. 115, 204302 (2015).
[Crossref] [PubMed]

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

S. Jahani and Z. Jacob, “Photonic skin-depth engineering,” JOSA B 32, 1346–1353 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

T. Tiecke, K. Nayak, J. Thompson, T. Peyronel, N. De Leon, V. Vuletić, and M. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
[Crossref]

2014 (5)

A. C. Niederberger, D. A. Fattal, N. R. Gauger, S. Fan, and R. G. Beausoleil, “Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints,” Opt. Express 22, 12971–12981 (2014).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22, A1895–A1906 (2014).
[Crossref]

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
[Crossref]

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

2013 (7)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21, 13351–13367 (2013).
[Crossref] [PubMed]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref] [PubMed]

V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).

X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
[Crossref]

2012 (1)

2011 (3)

F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Rev. 5, 308–321 (2011).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

2010 (2)

Z. Yu, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491 (2010).
[Crossref] [PubMed]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

2008 (1)

2007 (2)

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

2003 (1)

1999 (1)

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes,” JOSA B 16, 147–154 (1999).
[Crossref]

Agarwal, A. M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Almeida, V. R.

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Arabi, A.

A. Arabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Reports 743722 (2017).

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Aydin, K.

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Beausoleil, R. G.

Bermel, P.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Bhargava, S.

Bi, Z.-F.

Callewaert, F.

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

Cao, B.

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Carmon, T.

Celanovic, I.

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22, A1895–A1906 (2014).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Chandrahalim, H.

Chang-Hasnain, C.

Chembo, Y. K.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

Chen, B.-R.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Chrostowski, L.

V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).

Chu, T.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

Cui, Y.

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

De Leon, N.

Dewalt, C. J.

Ding, F.

Ding, Y.

Donzella, V.

V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Du, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Duchesne, D.

Duffy, A.

R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
[Crossref]

Fan, J. A.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Fan, K.

Fan, S.

A. C. Niederberger, D. A. Fattal, N. R. Gauger, S. Fan, and R. G. Beausoleil, “Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints,” Opt. Express 22, 12971–12981 (2014).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Fan, X.

Faraon, A.

A. Arabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Reports 743722 (2017).

Fard, S. T.

V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).

Fattal, D.

Fattal, D. A.

Frandsen, L. H.

Frellsen, L. F.

Fu, S. M.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Fu, Y.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

Fujisawa, T.

Fung, K. H.

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Ganapati, V.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
[Crossref]

Gauger, N. R.

Geiselmann, M.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Gong, Q.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Gorodetsky, M. L.

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes,” JOSA B 16, 147–154 (1999).
[Crossref]

Guo, X.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Han, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Hao, Y.

Hashemi, H.

He, Z.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Ilchenko, V. S.

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes,” JOSA B 16, 147–154 (1999).
[Crossref]

Jacob, Z.

Jahani, S.

S. Jahani and Z. Jacob, “Photonic skin-depth engineering,” JOSA B 32, 1346–1353 (2015).
[Crossref]

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Rev. 5, 308–321 (2011).
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Ji, T.

Jiang, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Jin, W.

W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25, 14746–14759 (2017).
[Crossref] [PubMed]

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

Joannopoulos, J.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Ju, N. P.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Jung, H.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Kim, M.-H.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Kippenberg, T. J.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Kumar, P.

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lalau-Keraly, C. M.

Lazarov, B. S.

F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Li, D.

Li, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Li, Q.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Li, X.

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Li, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Liang, X.

Lin, A.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Lin, Y.

Lin, Z.

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2d microcavities for nonlinear frequency conversion,” Opt. Lett. 42, 2818–2821 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).

Lipson, M.

Liu, J.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Liu, X.

Liu, Y.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Loncar, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2d microcavities for nonlinear frequency conversion,” Opt. Lett. 42, 2818–2821 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

Lou, Y.

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21, 13351–13367 (2013).
[Crossref] [PubMed]

Lu, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Lukin, M.

Ma, H.

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

Makino, S.

Mansoor, R.

R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
[Crossref]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

McNab, S. J.

Meng, Y.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Messina, R.

Miller, D. A.

D. A. Miller, “Silicon photonics: Meshing optics with applications,” Nat. Photonics 11, 403 (2017).
[Crossref]

Miller, O. D.

O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” Phys. Rev. Lett. 115, 204302 (2015).
[Crossref] [PubMed]

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref] [PubMed]

Molesky, S.

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).

Nayak, K.

Niederberger, A. C.

Ostby, E. P.

Overvig, A. C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Padilla, W. J.

Panepucci, R. R.

Pang, Y.

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Peyronel, T.

Pfeiffer, M. H.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

Qu, S.

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Rand, S. C.

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Rinnerbauer, V.

Rodriguez, A.

Rodriguez, A. W.

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2d microcavities for nonlinear frequency conversion,” Opt. Lett. 42, 2818–2821 (2017).
[Crossref] [PubMed]

W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25, 14746–14759 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” Phys. Rev. Lett. 115, 204302 (2015).
[Crossref] [PubMed]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

Sahakian, A.

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

Saitoh, K.

Sasse, H.

R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
[Crossref]

Sato, T.

Schäffler, F.

Schmidt-Grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Sell, D.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Shadrivov, I. V.

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Shen, Y.

Shrestha, S.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Sigmund, O.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
[Crossref] [PubMed]

F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Rev. 5, 308–321 (2011).
[Crossref]

Sitawarin, C.

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).

Soljacic, M.

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Song, Q.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Song, Y.

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Srinivasan, K.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Stein, A.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Sui, S.

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

Tang, H. X.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Tang, W.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

Thompson, J.

Tiecke, T.

Tu, M.-H.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Vahala, K. J.

Velev, V.

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

Vlasov, Y. A.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21, 13351–13367 (2013).
[Crossref] [PubMed]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

Vuletic, V.

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Wang, C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Wang, F.

F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Wang, J.

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

Wang, K.-M.

Wang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Wang, S. Y.

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Wiersig, J.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Wu, J.

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

Xiao, Y.-F.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Xu, K.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

Xu, Q.

Yablonovitch, E.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref] [PubMed]

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Yang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Yang, W.

Ye, T.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

Yeng, Y.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Yi, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Yu, N.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

Yu, Z.

Z. Yu, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491 (2010).
[Crossref] [PubMed]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Zhong, Y. K.

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Zhou, Y.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

Zhu, L.

Zou, C.-L.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE J. Photovoltaics (1)

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovoltaics 4, 175–182 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

IEEE Photonics J. (1)

S. M. Fu, Y. K. Zhong, N. P. Ju, M.-H. Tu, B.-R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8, 1–11 (2016).

Int. J. Numer. Model. Electron. Networks, Devices Fields (1)

R. Mansoor, H. Sasse, and A. Duffy, “Optimization of reflection coefficient in ring resonator add/drop filters,” Int. J. Numer. Model. Electron. Networks, Devices Fields 30e2080 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, “Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber,” J. Phys. D: Appl. Phys. 48, 215101 (2015).
[Crossref]

JOSA B (2)

S. Jahani and Z. Jacob, “Photonic skin-depth engineering,” JOSA B 32, 1346–1353 (2015).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes,” JOSA B 16, 147–154 (1999).
[Crossref]

Laser & Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Rev. 5, 308–321 (2011).
[Crossref]

Nano Lett. (1)

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and et al., “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

D. A. Miller, “Silicon photonics: Meshing optics with applications,” Nat. Photonics 11, 403 (2017).
[Crossref]

Opt. Commun. (2)

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

Y. Song, C. Wang, Y. Lou, B. Cao, and X. Li, “Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure,” Opt. Commun. 305, 212–216 (2013).
[Crossref]

Opt. Express (16)

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25, 191–201 (2017).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

T. Fujisawa, S. Makino, T. Sato, and K. Saitoh, “Low-loss, compact, and fabrication-tolerant si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Opt. Express 25, 9150–9159 (2017).
[Crossref] [PubMed]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21, 13351–13367 (2013).
[Crossref] [PubMed]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref] [PubMed]

W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25, 14746–14759 (2017).
[Crossref] [PubMed]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
[Crossref] [PubMed]

X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
[Crossref]

A. C. Niederberger, D. A. Fattal, N. R. Gauger, S. Fan, and R. G. Beausoleil, “Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints,” Opt. Express 22, 12971–12981 (2014).
[Crossref] [PubMed]

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25, 18462–18473 (2017).
[Crossref] [PubMed]

T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15, 7677–7681 (2007).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22, A1895–A1906 (2014).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (2)

Photonics North (1)

V. Donzella, S. T. Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Photonics North 8915, 89150Z (2013).

Photonics Res. (1)

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photonics Res. 2, A41–A44 (2014).
[Crossref]

Phys. Rev. A (2)

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Phys. Rev. Appl. (2)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and et al., “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8, 014009 (2017).
[Crossref]

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Phys. Rev. B (1)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Phys. Rev. Lett. (2)

O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” Phys. Rev. Lett. 115, 204302 (2015).
[Crossref] [PubMed]

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

Z. Yu, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491 (2010).
[Crossref] [PubMed]

Sci. Reports (3)

A. Arabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” Sci. Reports 743722 (2017).

F. Callewaert, V. Velev, P. Kumar, A. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Reports 8, 1358 (2018).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Reports 4, 4498 (2014).
[Crossref]

Science (1)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Struct. Multidiscip. Optim. (1)

F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Other (4)

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-μm wavelength grating coupler, bent waveguide and tunable microring on silicon photonic mpw,” IEEE Photonics Technol. Lett. (2018).

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” arXiv:1802.05744 (2018).

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion,” arXiv:1711.07810 (2017).

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of a general cavity coupler: A compact scatter (black region) acts as a coupler between a wavelength-scale, multimode cavity and a multimode port (waveguide). The design freedom of the scatter enables controllable coupling between the two devices at several wavelengths (red, yellow, and green arrows).
Fig. 2
Fig. 2 Nonlinear frequency conversion: Optimized couplers for SHG (a) and SFG (b) showing critical coupling between multimode ring resonators and waveguides. All structures (black) are made of GaP, while the substrate (white) is assumed to be vacuum. For the SHG design, the width of the waveguide is 150 nm, the diameter of the outer ring 2.6 μm, and the area of the designed coupling region 3.75 μm × 1.5 μm. The plot to the far right shows the energy spectrum inside the resonator near the fundamental and second-harmonic wavelengths λ{1,s} = {1500, 750} nm, with matched azimuthal wavenumbers m1 = 8 and ms = 2m1, (black, red) normalized by U0. The middle figures show the TM-polarized electric fields at the respective wavelengths. The complete suppression of outgoing/transmitted power through the waveguide provides a visual confirmation of critical coupling. Similar results are seen for the SFG design, (b), with three modes λ{1,2,s} = {1500, 907, 565} nm, m{1,2,s} = {9, 20, 28}, critically coupled between the cavity and waveguide. In this case, the width of the waveguide is 134 nm, the diameter of the outer ring 2.8 μm, and the area of the coupling region is 5.4 μm × 2 μm. In both designs, the discovered structures are binary.
Fig. 3
Fig. 3 Frequency comb generation: Optimized coupler for comb generation showing near critical coupling over 6 frequencies. The width of the waveguide is 300 nm, the diameter of the ring 1.8 μm, and the area of the desgined coupling region 4.5 μm × 4.5 μm. The figures show the TM-polarized electric field profiles at the respective azimuthal number m = {5 → 10}, corresponding to frequencies f = {0.667 → 1.157} c/1.5 μm, with equal spacing Δf = 0.098 c/1.5 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

min { ε ¯ } ( E , ε ¯ ) s . t . { 𝒢 i ( E , ε ¯ ) 0 } , i = 1 , 2 , , N ε sub ε ¯ ε s t ,
( E , ε ¯ ) = max i = 1 N [ Q i , c ( E , ε ¯ ) ξ i Q i , r ( E , ε ¯ ) ] 2 𝒢 ( E , ε ¯ ) = Q i , r 0 α i Q i , r ( E , ε ¯ ) ,
ω i U i P i in = 4 Q i , r 2 + Q i , r / Q i , c + Q i , c / Q i , r ,
( ε ¯ ) = max ε ¯ { min i = 1 N [ U i ( E , ε ¯ ) U i 0 ] } .
FOM = | β | 2 i = 1 , 2 , s Q i , r 2 + Q i , r / Q i , c + Q i , c / Q i , r ,

Metrics