Abstract

Diode-pumped alkali-atom laser (DPAL) has attracted intense attention due to its inherently high quantum efficiency, a good beam quality, and a high potential in the power scaling. However, most of DPAL research has been confined to the continuous wave and only a few pulsed operations have been attempted with limited performances. Here, we proposed and experimentally demonstrated a new scheme using a fast mode-hopping in the pump laser diode (LD), which enabled the quasi-continuous-wave (QCW) pulse modulation in a cesium (Cs) DPAL to control both the pulse width and the repetition rate. The pump wavelength was efficiently modulated in a fast cycle within discrete spectral ranges provided by the mode-hopping in the pump LD. The spectral range was successfully adjusted to include the resonant D2 absorption line of Cs atom to result in an effective gain modulation. Using this proposed scheme, we successfully achieved Cs-DPAL QCW modulation, whose pulse width was varied from tens of microseconds to a few milliseconds and the repetition rate was also variable in a wide frequency range from 10 Hz to 7.0 kHz. Detailed pump modulation method and the corresponding laser characteristics are discussed. The proposed method can be readily applied to pulse modulation of other types of alkali vapor lasers overcoming the previous limitations of DPAL to further expand applications in various light-matter interactions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulse operation of linearly polarized diode-pumped cesium-vapor laser based on acousto-optical modulation

Yang He, Fei Chen, Deyang Yu, Kuo Zhang, Qikun Pan, Junjie Sun, and Hanghang Yu
Opt. Express 27(13) 18883-18891 (2019)

Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime

Fei Chen, Dongdong Xu, Fei Gao, Changbin Zheng, Kuo Zhang, Yang He, Chunrui Wang, and Jin Guo
Opt. Express 23(9) 12414-12422 (2015)

Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers

Binglin Shen, Jinghua Huang, Xingqi Xu, Chunsheng Xia, and Bailiang Pan
Opt. Express 25(12) 13396-13407 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
    [Crossref]
  2. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  3. B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
    [Crossref] [PubMed]
  4. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  5. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  6. G. D. Hager and G. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
    [Crossref]
  7. M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
    [Crossref]
  8. H. Cai, Y. Wang, J. Han, G. An, W. Zhang, L. Xue, H. Wang, J. Zhou, M. Gao, and Z. Jiang, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” in Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I (International Society for Optics and Photonics, 2015), p. 95211U.
  9. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers,” in Gas and Chemical Lasers, and Applications III (International Society for Optics and Photonics, 2004), pp. 156–168.
  10. A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  11. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” in High Energy/Average Power Lasers and Intense Beam Applications IX (International Society for Optics and Photonics, 2016), paper 972902.
  12. E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
    [Crossref]
  13. B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” in High-Power Lasers 2016: Technology and Systems (International Society for Optics and Photonics, 2016), paper 99900C.
  14. B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
    [Crossref]
  15. B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
    [Crossref]
  16. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  17. B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers,” Opt. Express 25(12), 13396–13407 (2017).
    [Crossref] [PubMed]
  18. R. Pandey, D. Merchen, D. Stapleton, D. Irwin, C. Humble, S. Patterson, H. Kissel, and J. Biesenbach, “Narrow-line, tunable, high-power diode laser pump for DPAL applications,” in Laser Technology for Defense and Security IX (International Society for Optics and Photonics, 2013), paper 873307.
  19. B. Zhdanov, T. Ehrenreich, and R. Knize, “Narrowband external cavity laser diode arra,” Electron. Lett. 43(4), 221–222 (2007).
    [Crossref]
  20. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [Crossref] [PubMed]
  21. M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32(3), 269–274 (1993).
    [Crossref] [PubMed]
  22. H. Gong, Z. Liu, Y. Zhou, and W. Zhang, “Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching,” Appl. Opt. 53(33), 7878–7884 (2014).
    [Crossref] [PubMed]
  23. M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).
  24. S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
    [Crossref]
  25. H. Gong, Z. Liu, Y. Zhou, W. Zhang, and T. Lv, “Mode-hopping suppression of external cavity diode laser by mode matching,” Appl. Opt. 53(4), 694–701 (2014).
    [Crossref] [PubMed]
  26. D. A. Steck, “Cesium D line data,” Los Alamos National Laboratory (unpublished) 124 (2003).
  27. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007).
    [Crossref] [PubMed]
  28. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006).
    [Crossref] [PubMed]
  29. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  30. G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
    [Crossref]
  31. C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
    [Crossref]
  32. B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
    [Crossref]
  33. T. Acsente, “Laser diode intensity noise induced by mode hopping,” Rom. Rep. Phys. 59, 87 (2007).

2017 (2)

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers,” Opt. Express 25(12), 13396–13407 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

2012 (4)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
[Crossref]

2010 (1)

G. D. Hager and G. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

2009 (2)

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

2008 (1)

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

2007 (4)

2006 (2)

2005 (1)

1993 (1)

1984 (1)

C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

1981 (1)

M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
[Crossref]

Acsente, T.

T. Acsente, “Laser diode intensity noise induced by mode hopping,” Rom. Rep. Phys. 59, 87 (2007).

Alcock, C.

C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Barmashenko, B. D.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

Bilenca, A.

Birnbaum, M.

M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
[Crossref]

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Bouma, B. E.

Cable, A. E.

Cai, H.

Chen, F.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Chen, Y. P.

S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
[Crossref]

de Labachelerie, M.

Dudov, A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Dutta, S.

S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
[Crossref]

Ehrenreich, T.

B. Zhdanov, T. Ehrenreich, and R. Knize, “Narrowband external cavity laser diode arra,” Electron. Lett. 43(4), 221–222 (2007).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Elliott, D.

S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
[Crossref]

Eroshenko, V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Fincher, C. L.

M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

Gao, F.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Glebov, L.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

Gong, H.

Gorczynska, I.

Guo, J.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Guo, L.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Hager, G. D.

G. D. Hager and G. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

Han, J.

Horrigan, M.

C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Hsu, K.

Huang, J.

Huber, R.

Itkin, V.

C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Jiang, J. Y.

Knize, R.

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Narrowband external cavity laser diode arra,” Electron. Lett. 43(4), 221–222 (2007).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref] [PubMed]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Kurata, Y.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Li, D.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Liu, Z.

Lv, T.

Mikaelian, G.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Miyake, T.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Nagasaka, Y.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Oka, H.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Pan, B.

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Passedat, G.

Pautov, V.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Perram, G.

G. D. Hager and G. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

Perram, G. P.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Pitz, G. A.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Reisen, P.

Rosenwaks, S.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

Rotondaro, M.

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Rotondaro, M. D.

Rus, A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sadot, O.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

Saeki, T.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Sell, J.

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Shaffer, M.

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Shaffer, M. K.

Shen, B.

Smirnov, V.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

Srinivasan, V. J.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Taira, K.

Tanaka, M.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Tearney, G. J.

Tucker, A. W.

M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
[Crossref]

Ueyama, T.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Venus, G.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

Waichman, K.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

Wang, H.

Wang, Y.

Watanabe, Y.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Wertepny, D. E.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Wojtkowski, M.

Xia, C.

Xie, J.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Xu, X.

Xue, L.

Yacoby, E.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

Yang, G.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Yoshida, S.

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Yun, S. H.

Zhang, L.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Zhang, W.

Zhdanov, B.

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Narrowband external cavity laser diode arra,” Electron. Lett. 43(4), 221–222 (2007).
[Crossref]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref] [PubMed]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Zhou, Y.

Appl. Opt. (3)

Appl. Phys. B (2)

S. Dutta, D. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106(3), 629–633 (2012).
[Crossref]

G. D. Hager and G. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

Can. Metall. Q. (1)

C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Electron. Lett. (2)

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Narrowband external cavity laser diode arra,” Electron. Lett. 43(4), 221–222 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality,” IEEE J. Quantum Electron. 53(4), 1–7 (2017).
[Crossref]

J. Appl. Phys. (1)

M. Birnbaum, A. W. Tucker, and C. L. Fincher, “Laser emission cross section of Nd: YAG at 1064 nm,” J. Appl. Phys. 52(3), 1212–1215 (1981).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Tanaka, S. Yoshida, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode-hopping detection technique for external-cavity laser diodes,” Jpn. J. Appl. Phys. 48, 03A039 (2009).

Opt. Commun. (2)

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optik (Stuttg.) (1)

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Phys. Rev. A (1)

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N 2, H 2, HD, D 2, CH 4, C 2 H 6, CF 4, and H 3 e,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

Rom. Rep. Phys. (1)

T. Acsente, “Laser diode intensity noise induced by mode hopping,” Rom. Rep. Phys. 59, 87 (2007).

Other (6)

D. A. Steck, “Cesium D line data,” Los Alamos National Laboratory (unpublished) 124 (2003).

R. Pandey, D. Merchen, D. Stapleton, D. Irwin, C. Humble, S. Patterson, H. Kissel, and J. Biesenbach, “Narrow-line, tunable, high-power diode laser pump for DPAL applications,” in Laser Technology for Defense and Security IX (International Society for Optics and Photonics, 2013), paper 873307.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” in High Energy/Average Power Lasers and Intense Beam Applications IX (International Society for Optics and Photonics, 2016), paper 972902.

B. Zhdanov, M. Rotondaro, M. Shaffer, and R. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” in High-Power Lasers 2016: Technology and Systems (International Society for Optics and Photonics, 2016), paper 99900C.

H. Cai, Y. Wang, J. Han, G. An, W. Zhang, L. Xue, H. Wang, J. Zhou, M. Gao, and Z. Jiang, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” in Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I (International Society for Optics and Photonics, 2015), p. 95211U.

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers,” in Gas and Chemical Lasers, and Applications III (International Society for Optics and Photonics, 2004), pp. 156–168.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed QCW Cs-DPAL by modulating the pump in the spectral domain. (OC: Output coupler, PBS: Polarization beam splitter, Cs: Cesium, PD: photo-detector)
Fig. 2
Fig. 2 Continuous Wave (CW) lasing characteristics: (a) The CW laser output power versus the pump power. (b) The laser output beam quality M2 measured at the output power of 1.4 W.
Fig. 3
Fig. 3 The pump absorption measurement set-up and the QCW laser cavity in parallel. The precise absorption of the pump by a separate Cs vapor cell on the left and QCW lasing experiment on the right were executed simultaneously. (PD: Photo detector, OC: Output coupler, PBS: Polarization beam splitter, Cs: Cesium)
Fig. 4
Fig. 4 QCW Cs-DPAL output characteristics with the repetition rate of 100 Hz: (a) Correlation between the pump absorption and laser output in the temporal domain. Here the pump LD was modulated in the spectral domain near the mode-hopping condition. (b) RF spectrum of QCW laser to confirm the repetition rate of 100 Hz. The inset is the pulse train measured on an oscilloscope. (c) The average laser output power versus the average pump power. The inset is the optical spectrum of the laser output.
Fig. 5
Fig. 5 QCW output pulse characteristics for various repetition rates: (a) 10 Hz, (b) 1.5 kHz, and (c) 6.7 kHz. (d) The average laser output power versus the average pump power at the repetition rate of 6.7 kHz.
Fig. 6
Fig. 6 (a) QCW output pulse characteristics at the repetition rate of 7 kHz, which is the fastest record in QCW-DPAL. (b) The average laser output power versus the average pump power at the repetition rate of 7 kHz.

Tables (1)

Tables Icon

Table 1 QCW Cs-DPAL performance

Metrics