Abstract

The traceable absolute distances network with multiple global targets for multilateration is developed with a femtosecond pulse laser. It is aiming to enhance the ability and flexibility of the coordinate measurement, especially to monitor the positions of distributed stations in real time for some critical industrial environments. Here, multi-target absolute distances are determined by the temporal coherence method simultaneously with the pulse-to-pulse interferometer. Besides, the performance of the proposed system is evaluated in detail by comparing with a conventional interferometer. The experimental results indicate that the accuracy of distances measurement could all reach the sub-micron level and could be traceable to the length standard. Furthermore, a simple scheme of multilateration is presented based on the developed network. The coordinate of the initial point of multiple beams is measured by cooperation with a laser tracker. The results of coordinate measurement show that these methods have the potential for further industrial applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity evaluation using a femtosecond pulse laser for absolute distance measurement

Hanzhong Wu, Fumin Zhang, Jianshuang Li, Shiying Cao, Xiangsong Meng, and Xinghua Qu
Appl. Opt. 54(17) 5581-5590 (2015)

Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser

Hanzhong Wu, Fumin Zhang, Shiying Cao, Shujian Xing, and Xinghua Qu
Opt. Express 22(9) 10380-10397 (2014)

Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Fei Meng, Jianshuang Li, and Xinghua Qu
Opt. Express 23(24) 31582-31593 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
    [Crossref]
  2. W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
    [Crossref]
  3. X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
    [Crossref]
  4. B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
    [Crossref]
  5. D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
    [Crossref]
  6. S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  7. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  8. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref]
  9. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [Crossref]
  10. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  11. M. Cui, M. Zeitouny, N. Bhattacharya, S. A. Van Den Berg, H. Urbach, and J. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]
  12. P. Balling, P. Křen, P. Mašika, and S. A. Van Den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [Crossref] [PubMed]
  13. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  14. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  15. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  16. J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
    [Crossref] [PubMed]
  17. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
    [Crossref] [PubMed]
  18. G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
    [Crossref]
  19. G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
    [Crossref] [PubMed]
  20. S. A. Van Den Berg, S. Van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Reports 5, 14661 (2015).
    [Crossref]
  21. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  22. M. Cui, M. Zeitouny, N. Bhattacharya, S. Van Den Berg, and H. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  23. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  24. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
    [Crossref] [PubMed]
  25. H. Wu, F. Zhang, T. Liu, P. Balling, J. Li, and X. Qu, “Long distance measurement using optical sampling by cavity tuning,” Opt. Lett. 41(10), 2366–2369 (2016).
    [Crossref] [PubMed]
  26. P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
    [Crossref]
  27. S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
    [Crossref] [PubMed]
  28. C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).
  29. B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
    [Crossref]
  30. K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, and F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express 24(21), 24092–24104 (2016).
    [Crossref] [PubMed]
  31. Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
    [Crossref]
  32. R. Muijlwijk, “Update of the edlén formulae for the refractive index of air,” Metrologia 25(3), 189 (1988).
    [Crossref]

2018 (2)

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

2017 (1)

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

2016 (4)

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
[Crossref]

H. Wu, F. Zhang, T. Liu, P. Balling, J. Li, and X. Qu, “Long distance measurement using optical sampling by cavity tuning,” Opt. Lett. 41(10), 2366–2369 (2016).
[Crossref] [PubMed]

K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, and F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express 24(21), 24092–24104 (2016).
[Crossref] [PubMed]

2015 (6)

G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
[Crossref] [PubMed]

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

S. A. Van Den Berg, S. Van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Reports 5, 14661 (2015).
[Crossref]

2014 (2)

2012 (3)

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
[Crossref] [PubMed]

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

2011 (3)

2010 (2)

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

2009 (4)

2006 (1)

2005 (1)

D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
[Crossref]

2004 (1)

2000 (1)

1988 (1)

R. Muijlwijk, “Update of the edlén formulae for the refractive index of air,” Metrologia 25(3), 189 (1988).
[Crossref]

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Arai, K.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

Balling, P.

Bhattacharya, N.

Boeck, Y.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Bosse, H.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Braat, J.

Campbell, M.

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

Cao, S.

Chen, Y.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Chun, B. J.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cui, M.

Cui, P.

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Diez, C. A.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Dontsov, D.

Estler, W. T.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Forbes, A.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Freude, W.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Galetto, M.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Gao, W.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Goch, G.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Guo, Y.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Haitjema, H.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Han, S.

Härtig, F.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Hoeller, F.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Hughes, B.

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Hyun, S.

Inaba, H.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

Jang, Y. S.

Joo, K. N.

Kang, H. J.

Kay, N.

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

Kim, S.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Kim, S. W.

Kim, Y. J.

Knapp, W.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Koos, C.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Kren, P.

Kunzmann, H.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Lazzarini, G.

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

Lee, J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lewis, A.

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

Li, J.

Li, L.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Li, Y.

Lin, J.

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Liu, T.

Liu, Y.

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Lu, X.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Maropoulos, P. G.

D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
[Crossref]

Mašika, P.

Matsumoto, H.

Meiners-Hagen, K.

K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, and F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express 24(21), 24092–24104 (2016).
[Crossref] [PubMed]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Meyer, T.

Minoshima, K.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref]

Morse, E.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Muijlwijk, R.

R. Muijlwijk, “Update of the edlén formulae for the refractive index of air,” Metrologia 25(3), 189 (1988).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Ou, J.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Peterek, M.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Pollinger, F.

K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, and F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express 24(21), 24092–24104 (2016).
[Crossref] [PubMed]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Pöschel, W.

Prellinger, G.

Qu, X.

Rolt, S.

D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
[Crossref]

Schleitzer, Y.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Schmitt, R. H.

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

Spruck, B.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Sun, X.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takahashi, M.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

Takahashi, S.

Takamasu, K.

Urbach, H.

Van Den Berg, S.

Van Den Berg, S. A.

Van Eldik, S.

S. A. Van Den Berg, S. Van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Reports 5, 14661 (2015).
[Crossref]

Wang, G.

Wang, X.

Weckenmann, A.

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Wei, D.

Wei, H.

Weimann, C.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Wu, G.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

Wu, H.

Wu, X.

Xing, S.

Xue, B.

B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
[Crossref]

Yan, S.

Yang, H.

Yang, L.

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Yang, X.

B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
[Crossref]

Ye, J.

Yu, Q.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Yuan, Y.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Zeitouny, M.

Zhang, D.

D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, X.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Zhu, J.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Zhu, Z.

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

Appl. Opt. (1)

CIRP Annals (2)

R. H. Schmitt, M. Peterek, E. Morse, W. Knapp, M. Galetto, F. Härtig, G. Goch, B. Hughes, A. Forbes, and W. T. Estler, “Advances in large-scale metrology – review and future trends,” CIRP Annals 65(2), 643–665 (2016).
[Crossref]

W. Gao, S. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals 64(2), 773–796 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute distance measurement using an optical comb and an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

J. Physics: Conf. Ser. (1)

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of length and position with frequency combs,” J. Physics: Conf. Ser. 605, 012030 (2015).

Meas. Sci. Technol. (3)

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

D. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541 (2005).
[Crossref]

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24(1), 015203 (2012).
[Crossref]

Metrologia (1)

R. Muijlwijk, “Update of the edlén formulae for the refractive index of air,” Metrologia 25(3), 189 (1988).
[Crossref]

Nat. Photonics (4)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Opt. Express (11)

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
[Crossref] [PubMed]

G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

M. Cui, M. Zeitouny, N. Bhattacharya, S. Van Den Berg, and H. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
[Crossref] [PubMed]

P. Balling, P. Křen, P. Mašika, and S. A. Van Den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, and F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express 24(21), 24092–24104 (2016).
[Crossref] [PubMed]

Opt. Lasers Eng. (3)

Y. Liu, L. Yang, Y. Guo, J. Lin, P. Cui, and J. Zhu, “Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement,” Opt. Lasers Eng. 101, 35–43 (2018).
[Crossref]

X. Zhang, Z. Zhu, Y. Yuan, L. Li, X. Sun, Q. Yu, and J. Ou, “A universal and flexible theodolite-camera system for making accurate measurements over large volumes,” Opt. Lasers Eng. 50 (11), 1611 – 1620 (2012).
[Crossref]

B. Xue, X. Yang, and J. Zhu, “Architectural stability analysis of the rotary-laser scanning technique,” Opt. Lasers Eng. 78, 26–34 (2016).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

B. Hughes, M. Campbell, A. Lewis, G. Lazzarini, and N. Kay, “Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration,” Proc. SPIE 10332, 1033202 (2017).
[Crossref]

Sci. Reports (1)

S. A. Van Den Berg, S. Van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Reports 5, 14661 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of absolute distances network for distributed coordinate measurement.
Fig. 2
Fig. 2 The principle of multi-target absolute distances measurement.
Fig. 3
Fig. 3 The principle of multi-target detection with a DOE. (a) The detected beams reflected by two targets and passing through the DOE twice in 2-D space. (b) The detected light spots in front of the photodetector. (c) The detected coherence patterns of M0 and four targets.
Fig. 4
Fig. 4 The interference fringes of one measurement with four targets obtained by the oscilloscope.
Fig. 5
Fig. 5 The coherence patterns of initial point M0 and three targets. (a) M0. (b) Target 1. (c) Target 2. (d) Target 3.
Fig. 6
Fig. 6 Envelopes of coherence patterns after optimized modulated Gaussian curve fitting method. (a) M0. (b) Target 1. (c) Target 2. (d) Target 3.
Fig. 7
Fig. 7 Variations of the measured fractional distances at the path length difference around 1.5 m and 3.0 m. (a) 1.5 m. (b) 3.0 m.
Fig. 8
Fig. 8 Experimental and linear fitting results compared with the data obtained by the reference interferometer at the path length difference of around 1.5 m.
Fig. 9
Fig. 9 Experimental and linear fitting results compared with the data obtained by the reference interferometer at the path length difference of around 3.0 m.
Fig. 10
Fig. 10 The evaluation system of multilateration using a femtosecond pulse laser and a laser tracker.
Fig. 11
Fig. 11 3-D contribution of the calculated initial points of multiple beams and the measured targets by the laser tracker.

Tables (3)

Tables Icon

Table 1 The coordinates of targets measured by the laser tracker.

Tables Icon

Table 2 The measured absolute distances by a femtosecond pulse laser based on temporal coherence patterns.

Tables Icon

Table 3 The calculated coordinate of initial point O using the multilateration.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E t r a i n ( t ) = A ( t ) exp ( i ω 0 t + i ( φ 0 + Δ φ c e t ) ) m = + δ ( t m T r )
I = m | E ( t , x ) + E ( t , 0 ) | 2 = m ( I 1 + I 2 )
I 1 = 2 Γ π
I 2 = 2 Γ π 1 2 + i ξ exp [ 2 Γ d 2 ( 4 + ξ 2 ) v g 2 ] cos [ ω 0 d v ϕ ξ Γ d 2 ( 4 + ξ 2 ) v g 2 + N Δ φ c e ]
I t r a i n ( t ) = η I t r a i n ( t ) n
L n = ( N × C n × T r ± Δ n ) / 2
l n = ( x n x 0 ) 2 + ( y n y 0 ) 2 + ( z n z 0 ) 2
l n = L n l 0

Metrics