Abstract

A probabilistic shaping passive optical network (PON) based on symbol-level labeling and rhombus-shaped modulation is proposed in this paper, which indicates optical access network can be deployed in a flexible and robust way with reasonable costs. Energy efficiency is also achieved significantly. An experiment that demonstrates probabilistic shaping PON data transmission over 25 km standard single-mode fiber (SSMF) with CAP (carrier-less amplitude and phase) modulation is successfully conducted. Results show that the received optical power has improved by 2 dB at the threshold of 1×103 BER compared with the conventional 16-CAP, which suggests the superiority of our proposed scheme in next generation PON.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A probabilistically shaped star-CAP-16/32 modulation based on constellation design with honeycomb-like decision regions

Jianxin Ren, Bo Liu, Xing Xu, Lijia Zhang, Yaya Mao, Xiangyu Wu, Ying Zhang, Lei Jiang, and Xiangjun Xin
Opt. Express 27(3) 2732-2746 (2019)

LDPC-coded DFT-Spread DMT signal transmission employing probabilistic shaping 16/32QAM for optical interconnection

Xinxing Wu, Dongdong Zou, Ze Dong, Xue Zhao, Yifan Chen, and Fan Li
Opt. Express 27(7) 9821-9828 (2019)

11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection

Junwen Zhang, Jianjun Yu, Fan Li, Nan Chi, Ze Dong, and Xinying Li
Opt. Express 21(16) 18842-18848 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Ohara, A. Tagami, H. Tanaka, M. Suzuki, T. Miyaoka, T. Kodate, T. Aoki, K. Tanaka, H. Uchinao, S. Aruga, H. Ohnishi, H. Akita, Y. Taniguchi, and K. Arai, “Traffic analysis of Ethernet-PON in FTTH trial service,” in 2003 Optical Fiber Communications Conference, (2003), 607–608 vol.602.
  2. F. J. Effenberger, “Next generation PON: lessons learned from G-PON and GE-PON,” in 2009 35th European Conference on Optical Communication, (2009), 1–3.
  3. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
    [Crossref]
  4. A. M. Mikaeil, W. Hu, T. Ye, and S. B. Hussain, “Performance evaluation of XG-PON based mobile front-haul transport in cloud-RAN architecture,” J. Opt. Commun. Netw. 9(11), 984–994 (2017).
    [Crossref]
  5. C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).
  6. I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.
  7. P. M. Anandarajah, H. Tam, V. Vujicic, Z. Rui, and L. P. Barry, “UDWDM PON with 6 × 2.5Gbaud 16-QAM multicarrier transmitter and phase noise tolerant direct detection,” in 2015 Optical Fiber Communications Conference and Exhibition (OFC), (2015), 1–3.
  8. C. Qin, V. Houtsma, D. V. Veen, J. Lee, H. Chow, and P. Vetter, “40 Gbps PON with 23 dB power budget using 10 Gbps optics and DMT,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC), (2017), 1–3.
  9. L. Zhang, B. Liu, X. Xin, and Y. Wang, “10 × 70.4-Gb/s dynamic FBMB/CAP PON based on remote energy supply,” Opt. Express 22(22), 26985–26990 (2014).
    [Crossref] [PubMed]
  10. J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
    [Crossref] [PubMed]
  11. J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.
  12. Y. Nishino, M. Tanahashi, and H. Ochiai, “A new bit-labeling for trellis-shaped PSK with improved PAPR reduction capability,” in 2010 International Symposium On Information Theory & Its Applications, (2010), 747–751.
    [Crossref]
  13. R. Dischler, “Experimental comparison of 32-and 64-QAM constellation shapes on a coherent PDM burst mode capable system,” in 2011 37th European Conference and Exhibition on Optical Communication, 2011), 1–3.
  14. C. Pan and F. R. Kschischang, “Probabilistic 16-QAM Shaping in WDM Systems,” J. Lightwave Technol. 34(18), 4285–4292 (2016).
    [Crossref]
  15. M. P. Yankovn, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. K. Oxenlowe, M. Galili, and D. Zibar, “Constellation Shaping for WDM Systems Using 256QAM/1024QAM With Probabilistic Optimization,” J. Lightwave Technol. 34(22), 5146–5156 (2016).
    [Crossref]
  16. L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
    [Crossref]
  17. T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On Probabilistic Shaping of Quadrature Amplitude Modulation for the Nonlinear Fiber Channel,” J. Lightwave Technol. 34(21), 5063–5073 (2016).
    [Crossref]
  18. L. Bertignono, D. Pilori, A. Nespola, F. Forghieri, and G. Bosco, “Experimental comparison of PM-16QAM and PM-32QAM with probabilistically shaped PM-64QAM,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC), (2017), 1–3.
  19. F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
    [Crossref]
  20. F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
    [Crossref]
  21. D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.
  22. H. Méric, “Approaching the Gaussian Channel Capacity With APSK Constellations,” IEEE Commun. Lett. 19(7), 1125–1128 (2015).
    [Crossref]
  23. G. D. Forney and L. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Comm. 7(6), 877–892 (1989).
    [Crossref]
  24. G. D. Forney, “Multidimensional constellations. II. Voronoi constellations,” IEEE J. Sel. Areas Comm. 7(6), 941–958 (1989).
    [Crossref]
  25. T. Liu, C. Lin, and I. B. Djordjevic, “Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM,” Opt. Express 24(13), 13866–13874 (2016).
    [Crossref] [PubMed]

2018 (1)

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

2017 (1)

2016 (5)

2015 (2)

2014 (1)

2013 (2)

1993 (1)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

1989 (2)

G. D. Forney and L. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Comm. 7(6), 877–892 (1989).
[Crossref]

G. D. Forney, “Multidimensional constellations. II. Voronoi constellations,” IEEE J. Sel. Areas Comm. 7(6), 941–958 (1989).
[Crossref]

Alvarado, A.

Ammar, N.

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

Böcherer, G.

Caldwell, M. W.

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

Cano, I. N.

I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.

Cheng, M.

Da Ros, F.

da Silva, E. P.

Deng, L.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Djordjevic, I. B.

Effenberger, F.

Fay, L.

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

Fehenberger, T.

Forchhammer, S.

Forney, G. D.

G. D. Forney and L. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Comm. 7(6), 877–892 (1989).
[Crossref]

G. D. Forney, “Multidimensional constellations. II. Voronoi constellations,” IEEE J. Sel. Areas Comm. 7(6), 941–958 (1989).
[Crossref]

Fu, S.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Galili, M.

Gomez-Barquero, D.

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

Guan, Y.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Hanik, N.

He, D.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

He, J.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Hu, W.

Hussain, S. B.

Kschischang, F. R.

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM Shaping in WDM Systems,” J. Lightwave Technol. 34(18), 4285–4292 (2016).
[Crossref]

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

Larsen, K. J.

Lerín, A.

I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.

Li, B.

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Li, H.

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

Lin, C.

Liu, B.

Liu, D.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Liu, T.

Luo, Y.

Ma, Y.

Méric, H.

H. Méric, “Approaching the Gaussian Channel Capacity With APSK Constellations,” IEEE Commun. Lett. 19(7), 1125–1128 (2015).
[Crossref]

Michael, L.

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

Mikaeil, A. M.

Nishino, Y.

Y. Nishino, M. Tanahashi, and H. Ochiai, “A new bit-labeling for trellis-shaped PSK with improved PAPR reduction capability,” in 2010 International Symposium On Information Theory & Its Applications, (2010), 747–751.
[Crossref]

Ochiai, H.

Y. Nishino, M. Tanahashi, and H. Ochiai, “A new bit-labeling for trellis-shaped PSK with improved PAPR reduction capability,” in 2010 International Symposium On Information Theory & Its Applications, (2010), 747–751.
[Crossref]

Oxenlowe, L. K.

Pan, C.

Pasupathy, S.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

Peng, G.

Polo, V.

I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.

Prat, J.

I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.

Qian, Y.

Shi, L.

Shi, Y.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Shum, P. P.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Song, J.

F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
[Crossref]

Song, N.

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

Tanahashi, M.

Y. Nishino, M. Tanahashi, and H. Ochiai, “A new bit-labeling for trellis-shaped PSK with improved PAPR reduction capability,” in 2010 International Symposium On Information Theory & Its Applications, (2010), 747–751.
[Crossref]

Tang, M.

J. He, L. Shi, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Novel design of N-dimensional CAP filters for 10 Gb/s CAP-PON system,” Opt. Lett. 40(10), 2409–2412 (2015).
[Crossref] [PubMed]

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Wang, Y.

L. Zhang, B. Liu, X. Xin, and Y. Wang, “10 × 70.4-Gb/s dynamic FBMB/CAP PON based on remote energy supply,” Opt. Express 22(22), 26985–26990 (2014).
[Crossref] [PubMed]

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Wei, L.

G. D. Forney and L. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Comm. 7(6), 877–892 (1989).
[Crossref]

Xie, Q.

F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
[Crossref]

Xin, X.

Xu, Y.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Yan, K.

F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
[Crossref]

Yan, X.

Yang, F.

F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
[Crossref]

Yankovn, M. P.

Ye, T.

Yin, H.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Zhang, C.

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

Zhang, L.

Zhang, M.

Zhang, W.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

Zhou, X.

Zibar, D.

IEEE Commun. Lett. (2)

F. Yang, K. Yan, Q. Xie, and J. Song, “Non-Equiprobable APSK Constellation Labeling Design for BICM Systems,” IEEE Commun. Lett. 17(6), 1276–1279 (2013).
[Crossref]

H. Méric, “Approaching the Gaussian Channel Capacity With APSK Constellations,” IEEE Commun. Lett. 19(7), 1125–1128 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

G. D. Forney and L. Wei, “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Comm. 7(6), 877–892 (1989).
[Crossref]

G. D. Forney, “Multidimensional constellations. II. Voronoi constellations,” IEEE J. Sel. Areas Comm. 7(6), 941–958 (1989).
[Crossref]

IEEE Photonics J. (1)

C. Zhang, H. Li, N. Song, and H. Li, “High-stability algorithm in white-light phase-shifting interferometry for disturbance suppression,” IEEE Photonics J. 10(5), 6900718 (2018).

IEEE Trans. Broadcast (1)

L. Fay, L. Michael, D. Gomez-Barquero, N. Ammar, and M. W. Caldwell, “An Overview of the ATSC 3.0 Physical Layer Specification,” IEEE Trans. Broadcast 62(1), 159–171 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Opt. Lett. (1)

Other (10)

J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, and P. P. Shum, “Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017), 1–3.

Y. Nishino, M. Tanahashi, and H. Ochiai, “A new bit-labeling for trellis-shaped PSK with improved PAPR reduction capability,” in 2010 International Symposium On Information Theory & Its Applications, (2010), 747–751.
[Crossref]

R. Dischler, “Experimental comparison of 32-and 64-QAM constellation shapes on a coherent PDM burst mode capable system,” in 2011 37th European Conference and Exhibition on Optical Communication, 2011), 1–3.

I. N. Cano, A. Lerín, V. Polo, and J. Prat, “Flexible D(Q)PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling,” in 2015 European Conference on Optical Communication (ECOC), (2015), 1–3.

P. M. Anandarajah, H. Tam, V. Vujicic, Z. Rui, and L. P. Barry, “UDWDM PON with 6 × 2.5Gbaud 16-QAM multicarrier transmitter and phase noise tolerant direct detection,” in 2015 Optical Fiber Communications Conference and Exhibition (OFC), (2015), 1–3.

C. Qin, V. Houtsma, D. V. Veen, J. Lee, H. Chow, and P. Vetter, “40 Gbps PON with 23 dB power budget using 10 Gbps optics and DMT,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC), (2017), 1–3.

L. Bertignono, D. Pilori, A. Nespola, F. Forghieri, and G. Bosco, “Experimental comparison of PM-16QAM and PM-32QAM with probabilistically shaped PM-64QAM,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC), (2017), 1–3.

D. He, Y. Shi, Y. Guan, Y. Xu, Y. Wang, W. Zhang, and H. Yin, “Improvements to APSK constellation with gray mapping,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1–4.

K. Ohara, A. Tagami, H. Tanaka, M. Suzuki, T. Miyaoka, T. Kodate, T. Aoki, K. Tanaka, H. Uchinao, S. Aruga, H. Ohnishi, H. Akita, Y. Taniguchi, and K. Arai, “Traffic analysis of Ethernet-PON in FTTH trial service,” in 2003 Optical Fiber Communications Conference, (2003), 607–608 vol.602.

F. J. Effenberger, “Next generation PON: lessons learned from G-PON and GE-PON,” in 2009 35th European Conference on Optical Communication, (2009), 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of symbol-level labeling based probabilistic shaping.
Fig. 2
Fig. 2 Schematic of probabilistic shaping employing symbol-level labeling for 16-to-9 signal points mapping.
Fig. 3
Fig. 3 Principle of rhombus-shaped constellation modulation.
Fig. 4
Fig. 4 The proposed and the conventional constellations and their probability distributions.
Fig. 5
Fig. 5 Experimental Setup (AWG: arbitrary waveform generator; EA: electrical amplifier, EDFA: erbium-doped optical fiber amplifier; OF: optical fiber; VOA: variable optical attenuator; PD: photodiode; MSO: mixed signal oscilloscope).
Fig. 6
Fig. 6 The measured BER curves of probabilistic shaping 16-to-9 CAP before and after 25 km transmission (b2b: back-to-back).
Fig. 7
Fig. 7 The measured BER curves of probabilistic shaping 16-to-9 CAP under different data rates after 25 km transmission.
Fig. 8
Fig. 8 The measured BER curve of different modulation schemes after 25 km transmission and corresponding constellations.

Tables (2)

Tables Icon

Table 1 Probability distribution of the original 16 signal points.

Tables Icon

Table 2 Distribution of newly generated 9 signal points after probabilistic shaping.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ P ( 0 ) = 0.5 P ( 1 ) = 0.5
P ( x i + j ) = i , j { 00 , 01 , 10 } { γ i + j × P ( l e n g t h ( x i + j ) ) + γ i j × P ( i ) × P ( j ) } i , j { 00 , 01 , 10 } i + j { 0000 , 0001 , 0010 , 0100 , 1000 , 0101 , 1010 , 0110 , 1001 }
( X n , Y n ) = ( X 0 , Y 0 ) ( 1 sin α 0 cos α ) , sin α = 1 2 , cos α = 3 2
C F M ( C ) = C F M 0 × γ c ( Λ ) × γ s ( R )
γ c = d m i n 2 ( Λ ) / V ( Λ ) 2 n
γ c _ n e w / γ c _ o l d = d min 2 ( Λ n e w ) / V ( Λ n e w ) d min 2 ( Λ o l d ) / V ( Λ o l d ) = V ( Λ o l d ) V ( Λ n e w ) 1.5 γ s = V ( R ) 2 n 6 E a v g
E n e w _ a v g = 1 9 ( 0 + 6 × ( 3 2 ) 2 + 4 × ( 1 2 ) 2 + 2 × 1 + 2 × ( 3 2 ) 2 ) d min 2 = 4 3 d min 2 E o l d _ a v g = 1 9 ( 0 + 6 × 1 + 6 × 1 ) d min 2 = 4 3 d min 2 γ s _ n e w / γ s _ o l d = V ( R n e w ) 2 n / 6 E n e w _ a v g V ( R o l d ) 2 n / 6 E o l d _ a v g = ( V ( R o l d ) × cos α ) 2 n / 6 × 4 3 d min 2 V ( R o l d ) 2 n / 6 × 4 3 d min 2 = 3 2
C F M ( C n e w ) / C F M ( C o l d ) = ( γ c _ n e w / γ c _ o l d ) × ( γ s _ n e w / γ s _ o l d ) 1.35 1.3 d B > 1
E a v g = i p i × E i
E 16 = i p i × E i = 1 16 { 4 × [ ( 1 2 ) 2 + ( 1 2 ) 2 ] + 8 × [ ( 1 2 ) 2 + ( 3 2 ) 2 ] + 4 × [ ( 3 2 ) 2 + ( 3 2 ) 2 ] } d min 2 = 2.5 d min 2 E 9 = i p i × E i = 1 9 { 0 + 6 × 1 + 2 × [ ( 3 2 ) 2 + ( 3 2 ) 2 ] } d min 2 = 4 3 d min 2 > d min 2 E p s 9 = i p i × E i = { 0 + ( 20 512 + 26 512 ) [ ( 3 2 ) 2 + ( 3 2 ) 2 ] + [ 1 ( 20 512 + 26 512 ) 129 512 ] } d min 2 = 475 512 d min 2 < d min 2

Metrics