Abstract

We propose using a Si tip-Au nanoparticle (NP) combination system in photoinduced force microscopy (PiFM) to fundamentally improve its accuracy in the nanoscale characterization of light-matter interaction. Compared to conventional PiFM with Au-coated tips, such Si tip and Au NP combination enables superior photo-induced force detection while overcoming the tip-induced anisotropy by Au-coating. We map the near-field distribution of Au NPs in different arrangements achieving 120 signal-to-noise ratio and sub-6-nm resolution, even surpassing the tip-curvature limitation; we also map the azimuthally polarized beam profile showing an excellent symmetry. The proposed approach is essential to the promising single molecule spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

18 October 2018: A typographical correction was made to the funding section.


OSA Recommended Articles
Vertically-oriented nanoparticle dimer based on focused plasmonic trapping

Zhe Shen, Lei Su, and Yao-chun Shen
Opt. Express 24(14) 16052-16065 (2016)

Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch
Opt. Express 20(1) 220-227 (2012)

Dependence of plasmon coupling on curved interfaces

Yuan Ni, Caixia Kan, Juan Xu, Yang Liu, Haiying Xu, and Changshun Wang
Appl. Opt. 56(29) 8240-8245 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  2. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  3. M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  4. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref] [PubMed]
  5. S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
    [Crossref] [PubMed]
  6. S. Lerch and B. M. Reinhard, “Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers,” Nat. Commun. 9(1), 1608 (2018).
    [Crossref] [PubMed]
  7. M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
    [Crossref]
  8. M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).
  9. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  10. J. Liu and Y. Lu, “A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003).
    [Crossref] [PubMed]
  11. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  12. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  13. M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
    [Crossref] [PubMed]
  14. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
    [Crossref] [PubMed]
  15. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
    [Crossref]
  16. M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
    [Crossref] [PubMed]
  17. L. Sun, B. Bai, and J. Wang, “Probing vectorial near field of light: imaging theory and design principles of nanoprobes,” Opt. Express 26(14), 18644–18663 (2018).
    [Crossref] [PubMed]
  18. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]
  19. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
    [Crossref] [PubMed]
  20. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [Crossref] [PubMed]
  21. K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
    [Crossref]
  22. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
    [Crossref] [PubMed]
  23. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [Crossref]
  24. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
    [Crossref] [PubMed]
  25. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  26. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
    [Crossref] [PubMed]
  27. J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
    [Crossref]
  28. J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
    [Crossref] [PubMed]
  29. I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
    [Crossref] [PubMed]
  30. V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
    [Crossref]
  31. F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
    [Crossref] [PubMed]
  32. J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).
  33. J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
    [Crossref] [PubMed]
  34. M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
    [Crossref]
  35. J. Zeng, M. Albooyeh, M. Darvishzadeh-Varcheie, M. Kamandi, M. Veysi, M. Hanifeh, M. Rajaei, B. Albee, E. O. Potma, H. K. Wickramasinghe, and F. Capolino, “Unveiling magnetic and chiral nanoscale properties using structured light and nanoantennas,” in 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials) (2017), pp. 391–393.
    [Crossref]
  36. M. Kamandi, M. Albooyeh, M. Veysi, M. Rajaei, J. Zeng, K. Wickramasinghe, and F. Capolino, “Unscrambling structured chirality with structured light at nanoscale using photo-induced force,” arXiv180506468v3 [physics.optics]. (2018).
  37. F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
    [Crossref]
  38. B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
    [Crossref]
  39. A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
    [Crossref]
  40. D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
    [Crossref] [PubMed]
  41. K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
    [Crossref] [PubMed]
  42. T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
    [Crossref] [PubMed]
  43. T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
    [Crossref] [PubMed]
  44. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  45. M. Almajhadi and H. K. Wickramasinghe, “Contrast and imaging performance in photo induced force microscopy,” Opt. Express 25(22), 26923–26938 (2017).
    [Crossref] [PubMed]
  46. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
    [Crossref]
  47. C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
    [Crossref] [PubMed]
  48. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  49. J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
    [Crossref] [PubMed]
  50. H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
    [Crossref] [PubMed]

2018 (4)

S. Lerch and B. M. Reinhard, “Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers,” Nat. Commun. 9(1), 1608 (2018).
[Crossref] [PubMed]

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

L. Sun, B. Bai, and J. Wang, “Probing vectorial near field of light: imaging theory and design principles of nanoprobes,” Opt. Express 26(14), 18644–18663 (2018).
[Crossref] [PubMed]

2017 (7)

M. Almajhadi and H. K. Wickramasinghe, “Contrast and imaging performance in photo induced force microscopy,” Opt. Express 25(22), 26923–26938 (2017).
[Crossref] [PubMed]

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

2016 (6)

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
[Crossref] [PubMed]

2015 (6)

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

2014 (3)

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

2011 (2)

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

2010 (3)

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

2007 (1)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

2006 (1)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

2005 (1)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

2003 (2)

J. Liu and Y. Lu, “A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

2001 (2)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[Crossref] [PubMed]

1994 (1)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
[Crossref]

Ahn, J.

Ahn, J. S.

Ahn, K.

Aiello, A.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

Aizpurua, J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Albooyeh, M.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

Albrecht, T. R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Almajhadi, M.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

M. Almajhadi and H. K. Wickramasinghe, “Contrast and imaging performance in photo induced force microscopy,” Opt. Express 25(22), 26923–26938 (2017).
[Crossref] [PubMed]

Ambrosio, A.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

Ananth Tamma, V.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Bai, B.

Banzer, P.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Bao, Z.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

Bauer, T.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Baumberg, J. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Boyraz, O.

Brocious, J.

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Burdett, J.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Capasso, F.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

Capolino, F.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
[Crossref] [PubMed]

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

Cerjan, B.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Christensen, T.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Darvishzadeh-Varcheie, M.

M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
[Crossref] [PubMed]

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

Debus, C.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

Devlin, R. C.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

Dhuey, S.

K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
[Crossref]

Di Vece, M.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Ding, S.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Dorfmüller, J.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Drechsler, A.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

Esslinger, M.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Esteban, R.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fishman, D. A.

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Frommer, J.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Gu, K. L.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

Guclu, C.

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
[Crossref] [PubMed]

Habteyes, T. G.

K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
[Crossref]

Halas, N. J.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Hillenbrand, R.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Huang, F.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Jahng, J.

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Kadkhodazadeh, S.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Kamandi, M.

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

Kern, K.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Khan, R. M.

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

Khunsin, W.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Kiesow, K. I.

K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
[Crossref]

Kihm, H. W.

Kihm, J. E.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kim, B.

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

Kim, D. S.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, D.-S.

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, J.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Koo, S.

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Kumar Wickramasinghe, H.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

Ladani, F. T.

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lee, E. S.

Lee, K.

Lee, K. G.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lerch, S.

S. Lerch and B. M. Reinhard, “Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers,” Nat. Commun. 9(1), 1608 (2018).
[Crossref] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Leuchs, G.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, J.-F.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, X.

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Lieb, M. A.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, J.

J. Liu and Y. Lu, “A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003).
[Crossref] [PubMed]

Lu, Y.

J. Liu and Y. Lu, “A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Mardy, Z.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[Crossref] [PubMed]

Meixner, A. J.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Morrison, W.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Morrison, W. A.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Mortensen, N. A.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Naik, G. V.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

Nordlander, P.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Nowak, D.

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Nowak, D. B.

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
[Crossref]

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Panneerselvam, R.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Park, K.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

Park, N.

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Park, S.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Potma, E.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Potma, E. O.

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Ragan, R.

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide,” Opt. Express 24(25), 28337–28352 (2016).
[Crossref] [PubMed]

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

Rajaei, M.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

Rajapaksa, I.

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Raza, S.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Reinhard, B. M.

S. Lerch and B. M. Reinhard, “Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers,” Nat. Commun. 9(1), 1608 (2018).
[Crossref] [PubMed]

Ren, B.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Requicha, A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Ruiz, R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Sanders, D. P.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Schmidt, K.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Stenger, N.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Sun, L.

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tamma, V. A.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Thomann, I.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

Thrift, W. J.

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Tian, Z.-Q.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Tumkur, T.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Tumkur, T. U.

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

Uenal, K.

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Veysi, M.

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

Vogelgesang, R.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Wan, L.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wickramasinghe, H. K.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

M. Almajhadi and H. K. Wickramasinghe, “Contrast and imaging performance in photo induced force microscopy,” Opt. Express 25(22), 26923–26938 (2017).
[Crossref] [PubMed]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[Crossref] [PubMed]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
[Crossref]

Wickramasinghe, K.

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Wilson, W. L.

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, D.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Wubs, M.

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, J.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Yang, X.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yi, J.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Zeng, J.

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[Crossref] [PubMed]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
[Crossref]

Zhang, C.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, Y.

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Y.

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

ACS Nano (1)

K. L. Gu, Y. Zhou, W. A. Morrison, K. Park, S. Park, and Z. Bao, “Nanoscale domain imaging of all-polymer organic solar cells by photo-induced force microscopy,” ACS Nano 12(2), 1473–1481 (2018).
[Crossref] [PubMed]

ACS Photonics (2)

A. Ambrosio, R. C. Devlin, F. Capasso, and W. L. Wilson, “Observation of nanoscale refractive index contrast via photoinduced force microscopy,” ACS Photonics 4(4), 846–851 (2017).
[Crossref]

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy,” ACS Photonics 5(2) 390–397 (2017).

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Appl. Phys. Lett. (7)

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

K. I. Kiesow, S. Dhuey, and T. G. Habteyes, “Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution,” Appl. Phys. Lett. 105(5), 053105 (2014).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near‐field optical microscope,” Appl. Phys. Lett. 65(13), 1623–1625 (1994).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. Liu and Y. Lu, “A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles,” J. Am. Chem. Soc. 125(22), 6642–6643 (2003).
[Crossref] [PubMed]

J. Microsc. (2)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(3), 203–208 (2003).
[Crossref] [PubMed]

Nano Lett. (4)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. U. Tumkur, X. Yang, B. Cerjan, N. J. Halas, P. Nordlander, and I. Thomann, “Photoinduced force mapping of plasmonic nanostructures,” Nano Lett. 16(12), 7942–7949 (2016).
[Crossref] [PubMed]

T. Tumkur, X. Yang, C. Zhang, J. Yang, Y. Zhang, G. V. Naik, P. Nordlander, and N. J. Halas, “Wavelength-dependent optical force imaging of bimetallic Al–Au heterodimers,” Nano Lett. 18(3), 2040–2046 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, “Multipole plasmons and their disappearance in few-nanometre silver nanoparticles,” Nat. Commun. 6(1), 8788 (2015).
[Crossref] [PubMed]

S. Lerch and B. M. Reinhard, “Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers,” Nat. Commun. 9(1), 1608 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Nat. Rev. Mater. (1)

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Appl. (2)

M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, K. Wickramasinghe, and F. Capolino, “Enantiospecific detection of chiral nanosamples using photoinduced force,” Phys. Rev. Appl. 8(6), 064010 (2017).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, and F. Capolino, “Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement,” Phys. Rev. Appl. 8(2), 024033 (2017).
[Crossref]

Phys. Rev. B (2)

B. Kim, J. Jahng, R. M. Khan, S. Park, and E. O. Potma, “Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy,” Phys. Rev. B 95(7), 075440 (2017).
[Crossref]

J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, “Gradient and scattering forces in photoinduced force microscopy,” Phys. Rev. B 90(15), 155417 (2014).
[Crossref]

Phys. Rev. Lett. (3)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Science (2)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Other (4)

M. Darvishzadeh-Varcheie, W. J. Thrift, M. Kamandi, R. Ragan, and F. Capolino, “Two-scale structure for giant field enhancement: combination of Rayleigh anomaly and colloidal plasmonic resonance,” (2018).

J. Zeng, M. Albooyeh, M. Darvishzadeh-Varcheie, M. Kamandi, M. Veysi, M. Hanifeh, M. Rajaei, B. Albee, E. O. Potma, H. K. Wickramasinghe, and F. Capolino, “Unveiling magnetic and chiral nanoscale properties using structured light and nanoantennas,” in 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials) (2017), pp. 391–393.
[Crossref]

M. Kamandi, M. Albooyeh, M. Veysi, M. Rajaei, J. Zeng, K. Wickramasinghe, and F. Capolino, “Unscrambling structured chirality with structured light at nanoscale using photo-induced force,” arXiv180506468v3 [physics.optics]. (2018).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the measurement setup. LD: laser diode, AOM: acousto-optic modulator, SM: single-mode, LP: linear polarizer, HWP: half-wave plate, RP: radial polarizer. The radial polarizer is removed for linearly polarized incident beams and is only used for APB profile mapping. (b) Comparison of a bare Si and an Au coated Si tip showing the advantages of taking PiFM signal with the Si tip due to the sharper end radius and more symmetric shape. The small Au grains at the end of the coated tip increase the tip radius and also result in different lateral polarizabilities of the induced dipole in different directions. Scales are not real and are exaggerated for clarity.
Fig. 2
Fig. 2 (a-f) PiFM and topography images of Au NPs illuminated by LP light in different directions. Two monomers, two dimers, and a cluster consisting of 10 NPs are denoted in (a). The monomers A and B are completely dark in all PiFM images. Dimer C and D are mostly excited and bright in (d) and (f), respectively. Cluster E is always excited and is almost equally bright in all figures. Scale bar is 200 nm.
Fig. 3
Fig. 3 (a-d) Zoomed-in PiFM images of the dimer C in response to LP light with different polarization directions, which changes from 0° to 90° with 30° increments. The maximum PiFM values are 0.72, 1.43, 2.62, and 4.22 mV, from (a) to (d), respectively. All the images are normalized to the maximum PiFM signal of 4.22 mV in (d) to be comparable. (e,f) The electric field enhancement obtained in the simulation for two spheres with a diameter of 30 nm and a gap of 1 nm, when the incident beam is polarized along the x- and y-axes, respectively. (g) The perturbation of the fields due to the tip at the edge when the polarization is aligned with the dimer axis, which shows that the tip effect cannot be ignored in obtaining the force values. (h) Normalized PiFM signal on a line scan shown in (d). The bright gap and edges are clear. A feature as small as 5.8 nm is clearly revealed in PiFM image. Lines A and B corresponds to the points A and B in (d). (i) Normalized calculated force (in the z-axis) on a line scan shown in (e) using the Maxwell stress tensor and considering the tip effects. The trend is similar to the PiFM signal in (h). (j) Two line-scans on the dimer, which shows the surface roughness of the NPs. Features smaller than 6 nm have been resolved.
Fig. 4
Fig. 4 Beam mapping using PiFM. (a,b) zoomed in PiFM images of dimer C and cluster E. Here, the beam center is aligned to the tip, and the sample is scanned. P1 and P2 are the points on which the tip is fixed to map the beam profile of an LP light and an APB, respectively. Double-end arrow shows the direction of incident LP light. (c) Beam map when the tip is fixed at P1, and the polarization of LP light is in the x-axis. (d) Beam map when the tip is fixed at P1, and the polarization of LP light is in the y-axis. Since dimer C is aligned in the y direction, it is mostly responsive to the y-polarized light. The PiFM images in (c) and (d) are normalized to the maximum value in (d) to be comparable. (d) Numerical calculation of normalized |Ey|2 for a y-polarized LP light. (f) Beam profile of an APB with high SNR. The tip is fixed at P2 on cluster E, and the beam is scanned, while the incident beam is an APB. (g) Numerical calculation of normalized |E|2. (h) Comparison of the experimental data and numerical calculation for APB. The line scans A-A’, B-B’ (normalized PiFM in x and y directions, respectively), and C-C’ (normalized |E|2) match very well. The scale bar in all figures is 500 nm.

Metrics