Abstract

Coupling strength in taper-coupled microbottle resonators can be tuned by offsetting the taper along the resonator profile, similar to controlling the air-gap in microsphere excitation, and hence, achieve desired coupling characteristics for a specific mode. Such flexibility makes microbottles attractive and adaptable laser cavities. In this paper, lasing characteristics of Yb3+-doped microbottle laser (MBL) coupled to tapered fiber are theoretically investigated. It is demonstrated that desired lasing characteristics for a particular mode are achievable by controlling the taper-resonator coupling, intrinsic quality factor (Q) and dopant concentration. Although, high Q whispering gallery cavities provide high internal powers, which is favorable especially for low gain materials, they lack high output powers. Hence, care should be taken in designing MBLs to attain the highest possible output power. Here, we address such issues, and optimized the required resonator parameters (for both pump and signal) for a low threshold pump power, high efficiency and desired lasing wavelength.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controllable and selective single-mode lasing in polymer microbottle resonator

Qijing Lu, Xiaogang Chen, Shusen Xie, and Xiang Wu
Opt. Express 26(16) 20183-20191 (2018)

Modeling rare-earth doped microfiber ring lasers

Yuhang Li, Guillaume Vienne, Xiaoshun Jiang, Xinyun Pan, Xu Liu, Peifu Gu, and Limin Tong
Opt. Express 14(16) 7073-7086 (2006)

Efficient excitation and phase matching of fiber-coupled degenerate whispering gallery modes

Shahab Bakhtiari Gorajoobi, Ganapathy Senthil Murugan, and Michalis N. Zervas
J. Opt. Soc. Am. B 36(9) 2452-2460 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
    [Crossref]
  2. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  3. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
    [Crossref]
  4. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
    [Crossref]
  5. S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  6. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [Crossref] [PubMed]
  7. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
    [Crossref]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  9. J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).
  10. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [Crossref] [PubMed]
  11. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [Crossref] [PubMed]
  12. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  13. A. Polman and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
    [Crossref]
  14. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  15. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave- spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
    [Crossref]
  16. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004).
    [Crossref] [PubMed]
  17. G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
    [Crossref] [PubMed]
  18. G. Senthil Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
    [Crossref] [PubMed]
  19. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [Crossref] [PubMed]
  20. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add-drop filters,” Opt. Lett. 35(11), 1893–1895 (2010).
    [Crossref] [PubMed]
  21. J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
    [Crossref] [PubMed]
  22. M. Sumetsky, “Delay of light in an optical bottle resonator with nanoscale radius variation: dispersionless, broadband, and low loss,” Phys. Rev. Lett. 111(16), 163901 (2013).
    [Crossref] [PubMed]
  23. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  24. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  25. F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
    [Crossref] [PubMed]
  26. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  27. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  28. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001).
    [Crossref] [PubMed]
  29. Q. Lu, X. Wu, L. Liu, and L. Xu, “Mode-selective lasing in high-Q polymer micro bottle resonators,” Opt. Express 23(17), 22740–22745 (2015).
    [Crossref] [PubMed]
  30. S. Bakhtiari Gorajoobi and M. N. Zervas, “Yb-doped and Raman microbottle lasers,” in Photonics Conference (IPC) (IEEE, 2017), pp. 269–270.
  31. S. B. Gorajoobi, G. S. Murugan, and M. N. Zervas, “Mode-selective spectrally-cleaned-up microbottle resonator laser,” in Photonics Conference (IPC) (IEEE, 2016), pp. 105–106.
  32. V. H. Pham, H. Bui, T. S. Pham, T. A. Nguyen, T. V. Nguyen, H. T. Le, T. N. Bui, V. P. Nguyen, and R. Coisson, “Control of whispering-gallery-mode spectrum from erbium-doped silica microsphere lasers,” J. Opt. Soc. Am. B 30(6), 1586–1589 (2013).
    [Crossref]
  33. F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5(6), B29–B33 (2017).
    [Crossref]
  34. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
    [Crossref]
  35. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
    [Crossref]
  36. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [Crossref]
  37. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  38. S. B. Gorajoobi, M. M. Kaykisiz, and E. Bulgan, “Characterization of strongly coupled Si-wire waveguides for high-density optical WDM and sensing applications,” J. Lightwave Technol. 31(22), 3469–3476 (2013).
    [Crossref]
  39. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [Crossref]
  40. P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  41. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [Crossref]
  42. M. N. Zervas, “Fabrication and modelling of truncated oblate and prolate microresonators,” Proc. SPIE 8600, 860015 (2013).
    [Crossref]
  43. M. N. M. Nasir, G. S. Murugan, and M. N. Zervas, “Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators,” J. Opt. Soc. Am. B 33(9), 1963–1970 (2016).
    [Crossref]
  44. M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
    [Crossref]
  45. F. Sanchez, B. Meziane, T. Chartier, G. Stephan, and P. L. François, “Output-coupling optimization of Nd-doped fiber lasers,” Appl. Opt. 34(33), 7674–7679 (1995).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

M. N. M. Nasir, G. S. Murugan, and M. N. Zervas, “Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators,” J. Opt. Soc. Am. B 33(9), 1963–1970 (2016).
[Crossref]

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
[Crossref] [PubMed]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

2015 (1)

2014 (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (6)

2012 (1)

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (2)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

G. Senthil Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
[Crossref] [PubMed]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

2006 (2)

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

A. Polman and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[Crossref]

2005 (1)

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

2004 (4)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

2003 (2)

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (3)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

1995 (2)

F. Sanchez, B. Meziane, T. Chartier, G. Stephan, and P. L. François, “Output-coupling optimization of Nd-doped fiber lasers,” Appl. Opt. 34(33), 7674–7679 (1995).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Agarwal, A.

Agha, I. H.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Bakhtiari Gorajoobi, S.

S. Bakhtiari Gorajoobi and M. N. Zervas, “Yb-doped and Raman microbottle lasers,” in Photonics Conference (IPC) (IEEE, 2017), pp. 269–270.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Birks, T. A.

Brambilla, G.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Brongersma, M. L.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

Bui, H.

Bui, T. N.

Bulgan, E.

Cai, M.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Chartier, T.

Cheung, G.

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Coisson, R.

Danto, S.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Ding, M.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Fang, W.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5(6), B29–B33 (2017).
[Crossref]

Feron, P.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Foster, M. A.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

François, P. L.

Gaeta, A. L.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Goh, K.

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Gorajoobi, S. B.

S. B. Gorajoobi, M. M. Kaykisiz, and E. Bulgan, “Characterization of strongly coupled Si-wire waveguides for high-density optical WDM and sensing applications,” J. Lightwave Technol. 31(22), 3469–3476 (2013).
[Crossref]

S. B. Gorajoobi, G. S. Murugan, and M. N. Zervas, “Mode-selective spectrally-cleaned-up microbottle resonator laser,” in Photonics Conference (IPC) (IEEE, 2016), pp. 105–106.

Gu, F.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5(6), B29–B33 (2017).
[Crossref]

Guo, H.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Haus, H. A.

He, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Herkommer, C.

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hu, J.

Ilchenko, V. S.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Jacques, F.

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Jung, Y.

Kalkman, J.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Karpov, M.

Kaykisiz, M. M.

Kimble, H.

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kimerling, L. C.

Kippenberg, T.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kippenberg, T. J.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave- spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Knight, J. C.

Kozacik, S.

Laine, J.-P.

Le, H. T.

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Leuchs, G.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Li, L.

Lin, H.

Lin, P. T.

Lin, X.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Linghu, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Little, B. E.

Liu, J.

Liu, L.

Lu, Q.

Lucas, E.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Maleki, L.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Marquardt, C.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Matsko, A. B.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Meziane, B.

Min, B.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Murakowski, M.

Murugan, G. S.

M. N. M. Nasir, G. S. Murugan, and M. N. Zervas, “Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators,” J. Opt. Soc. Am. B 33(9), 1963–1970 (2016).
[Crossref]

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add-drop filters,” Opt. Lett. 35(11), 1893–1895 (2010).
[Crossref] [PubMed]

S. B. Gorajoobi, G. S. Murugan, and M. N. Zervas, “Mode-selective spectrally-cleaned-up microbottle resonator laser,” in Photonics Conference (IPC) (IEEE, 2016), pp. 105–106.

Musgraves, J. D.

Nasir, M. N. M.

Nguyen, T. A.

Nguyen, T. V.

Nguyen, V. P.

Nic Chormaic, S.

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
[Crossref] [PubMed]

Nilsson, J.

Nunzi Conti, G.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Okawachi, Y.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Painter, O.

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Petrovich, M. N.

Pfeiffer, M. H. P.

Pham, T. S.

Pham, V. H.

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Polman, A.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

A. Polman and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Prather, D.

Raimond, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Richardson, D. J.

Richardson, K.

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Sanchez, F.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schwefel, H. G. L.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Senthil Murugan, G.

Sercel, P. C.

Sharping, J. E.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Singh, V.

Soria, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Spillane, S.

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Stephan, G.

Strekalov, D. V.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Sumetsky, M.

M. Sumetsky, “Delay of light in an optical bottle resonator with nanoscale radius variation: dispersionless, broadband, and low loss,” Phys. Rev. Lett. 111(16), 163901 (2013).
[Crossref] [PubMed]

M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004).
[Crossref] [PubMed]

Tong, L.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Vahala, K.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001).
[Crossref] [PubMed]

Vahala, K. J.

A. Polman and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Wang, H.

Ward, J. M.

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
[Crossref] [PubMed]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Wilcut, E.

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wilkinson, J. S.

Wu, X.

Xie, F.

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5(6), B29–B33 (2017).
[Crossref]

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Xu, L.

Yang, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

Yang, Y.

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
[Crossref] [PubMed]

Yao, N.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Zeng, H.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Zervas, M.

Zervas, M. N.

M. N. M. Nasir, G. S. Murugan, and M. N. Zervas, “Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators,” J. Opt. Soc. Am. B 33(9), 1963–1970 (2016).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

M. N. Zervas, “Fabrication and modelling of truncated oblate and prolate microresonators,” Proc. SPIE 8600, 860015 (2013).
[Crossref]

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
[Crossref] [PubMed]

G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add-drop filters,” Opt. Lett. 35(11), 1893–1895 (2010).
[Crossref] [PubMed]

G. Senthil Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
[Crossref] [PubMed]

S. B. Gorajoobi, G. S. Murugan, and M. N. Zervas, “Mode-selective spectrally-cleaned-up microbottle resonator laser,” in Photonics Conference (IPC) (IEEE, 2016), pp. 105–106.

S. Bakhtiari Gorajoobi and M. N. Zervas, “Yb-doped and Raman microbottle lasers,” in Photonics Conference (IPC) (IEEE, 2017), pp. 269–270.

Zhuang, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5(6), B29–B33 (2017).
[Crossref]

Zou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium- doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (2)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Light Sci. Appl. (1)

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref] [PubMed]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Nucl. Instruments Methods (1)

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instruments Methods 242(1–2), 182–185 (2006).

Opt. Express (3)

Opt. Lett. (7)

Optica (1)

Photon. Res. (1)

Phys. Rev. A (6)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

A. Polman and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[Crossref]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Phys. Rev. Lett. (3)

M. Sumetsky, “Delay of light in an optical bottle resonator with nanoscale radius variation: dispersionless, broadband, and low loss,” Phys. Rev. Lett. 111(16), 163901 (2013).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

M. N. Zervas, “Fabrication and modelling of truncated oblate and prolate microresonators,” Proc. SPIE 8600, 860015 (2013).
[Crossref]

Sci. Rep. (1)

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6(1), 25152 (2016).
[Crossref] [PubMed]

Other (3)

S. Bakhtiari Gorajoobi and M. N. Zervas, “Yb-doped and Raman microbottle lasers,” in Photonics Conference (IPC) (IEEE, 2017), pp. 269–270.

S. B. Gorajoobi, G. S. Murugan, and M. N. Zervas, “Mode-selective spectrally-cleaned-up microbottle resonator laser,” in Photonics Conference (IPC) (IEEE, 2016), pp. 105–106.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Calculated (a) gain per unit length spectra for Yb3+:silica material as the upper-state population inversion percentage increases, and (b) corresponding maximum attainable inversion percentage as a function of pumping wavelength.
Fig. 2
Fig. 2 Required normalized upper-state threshold population N ¯ 2 thr ( λ s ) (at λs = 1068nm) as function of (a) external signal Qext(s) and intrinsic Q0(s) for NT = 1.16 × 1026 m−3, and (b) external signal Qext(s) and dopant concentration NT’s for Q0(s) = 106 . Dashed lines are contours of maximum normalized inversion N ¯ 2 max ( λ p ), corresponding to different pump wavelengths.
Fig. 3
Fig. 3 Intrinsic Q to achieve lasing for signal critical coupling ( Q (s) crit ) as function of dopant concentration and lasing wavelength. Pump wavelength λp = 976nm.
Fig. 4
Fig. 4 (a) Schematic 3D demonstration, and (b) cross-section of tapered fiber-coupled microbottle laser.
Fig. 5
Fig. 5 a) Intensity profile of the first five axial modes with radial order p = 1 and m = 157 at λs = 1070 ± 2nm wavelength band corresponding to microbottle resonator shown in (b) with shown dimensions.
Fig. 6
Fig. 6 (a) Calculated external Q factor of fundamental pump and signal modes, internal (b) pump and (c) signal, (d) output signal powers, as a function of taper offset from the resonator center and intrinsic signal Q. The intrinsic pump Q is 106, the dopant concentration NT = 1.16 × 1026 m−3, and the input pump power is 1mW
Fig. 7
Fig. 7 (a) Internal and (b) output signal powers as a function intrinsic signal Q and offset for fixed intrinsic pump Q of 105.
Fig. 8
Fig. 8 (a) Total passive Q of the fundamental pump and signal modes as function of offset, internal (b) pump and (c) signal powers, and (d) output power as a function of dopant concentration and tapered fiber offset from the resonator center. Input pump power is 1mW.
Fig. 9
Fig. 9 (a) Total passive Q of signal and pump modes as a function of taper offset, internal (b) pump and (c) signal powers, and (d) output signal powers a function of dopant concentration and taper offset from the resonator center for intrinsic Q’s of 105. Input pump power is 1mW.
Fig. 10
Fig. 10 External Q of signal as a function of wavelength and tapered fiber offset.
Fig. 11
Fig. 11 a) internal pump power, b) internal signal power,, and c) output signal power as function of signal wavelength and taper offset from resonator center. Input pump power is 1mW.
Fig. 12
Fig. 12 Slope efficiency as function of lasing wavelength and taper offset from resonator center, for intrinsic Q of signal and pump of (a) 2 × 105, (b) 2 × 106, and (c) 5 × 107. Input pump power is 1mW.
Fig. 13
Fig. 13 Slope efficiency as function of lasing wavelength and taper offset from resonator center, for dopant concentrations of (a) 3 × 1025m−3, (b) 2 × 1026m−3, and (c) 2 × 1027m−3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N ¯ 2 thr ( λ s )= α s + α passive(s) T α s + g s * = α s + 2π n s λ s ( 1 Q 0(s) + 1 Q ext(s) ) α s + g s * .
1 N T ( 1 Q 0(s) + 1 Q ext(s) )= Γ s λ s 2π n s [ σ p abs σ p abs + σ p ems ( σ s abs + σ s ems ) σ s abs ]=M( λ p , λ s )
| a p | 2 = | κ cf(p) 1 t c(p) e ( l p + α p passive ) L rt | 2 P p
| a s | 2 = 1 n p h v p V p [ α p N ¯ 2 thr ( α p + g p * ) ] | a p | 2 + N ¯ 2 thr N T τ Yb 1 n s h v s V s [ N ¯ 2 thr ( α s + g s * ) α s ]
P p thr = n p h v p V p N ¯ 2 thr N T | 1 t (c)p e ( l p + α p passive ) L rt | 2 τ Yb κ cf(p) 2 [ N ¯ 2 thr ( α p + g p * ) α p ] .
η d P s d P p = n s v s V s n p v p V p [ α p N ¯ 2 thr ( α p + g p * ) ] [ N ¯ 2 thr ( α s + g s * ) α s ] κ fc(s) 2 κ cf(p) 2 | 1 t c(p) e ( l p + α p passive ) L rt | 2 .

Metrics