Abstract

A grating coupler is an essential building block for compact and flexible photonics integration. In order to meet the increasing demand of mid-infrared (MIR) integrated photonics for sensitive chemical/gas sensing, we report a silicon-on-insulator (SOI) based MIR subwavelength grating coupler (SWGC) operating in the 3.7 μm wavelength range. We provide the design guidelines of a uniform and apodized SWGC, followed by numerical simulations for design verification. We experimentally demonstrate both types of SWGC. The apodized SWGC enables high coupling efficiency of −6.477 dB/facet with 3 dB bandwidth of 199 nm, whereas the uniform SWGC shows larger 3dB bandwidth of 263.5 nm but slightly lower coupling efficiency of −7.371 dB/facet.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact single-etched sub-wavelength grating couplers for O-band application

Yun Wang, Luhua Xu, Amar Kumar, Yannick D’Mello, David Patel, Zhenping Xing, Rui Li, Md Ghulam Saber, Eslam El-Fiky, and David V. Plant
Opt. Express 25(24) 30582-30590 (2017)

Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band

Daniel Benedikovic, Carlos Alonso-Ramos, Pavel Cheben, Jens H. Schmid, Shurui Wang, Robert Halir, Alejandro Ortega-Moñux, Dan-Xia Xu, Laurent Vivien, Jean Lapointe, Siegfried Janz, and Milan Dado
Opt. Express 24(12) 12893-12904 (2016)

High positional freedom SOI subwavelength grating coupler (SWG) for 300 mm foundry fabrication

Eng Wen Ong, Thomas Wallner, Nicholas M. Fahrenkopf, and Douglas D. Coolbaugh
Opt. Express 26(22) 28773-28792 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
    [Crossref] [PubMed]
  2. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  3. M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
    [Crossref] [PubMed]
  4. B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).
  5. B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
    [Crossref]
  6. Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
  7. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3(9), 1523–1536 (2013).
    [Crossref]
  8. L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
    [Crossref] [PubMed]
  9. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
    [Crossref] [PubMed]
  10. N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared,” IEEE Photon. Technol. Lett. 24(17), 1536–1538 (2012).
    [Crossref]
  11. C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
    [Crossref] [PubMed]
  12. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
    [Crossref] [PubMed]
  13. M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
    [Crossref]
  14. J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.
  15. H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).
  16. P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).
  17. J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
    [Crossref]
  18. J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
    [Crossref] [PubMed]
  19. S. Radosavljevic, B. Kuyken, and G. Roelkens, “Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform,” Opt. Express 25(16), 19034–19042 (2017).
    [Crossref] [PubMed]
  20. J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
    [Crossref]
  21. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  22. M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
    [Crossref] [PubMed]
  23. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
    [Crossref] [PubMed]
  24. C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
    [Crossref]
  25. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
    [Crossref] [PubMed]
  26. K. Yvind and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
    [Crossref]
  27. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  28. X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
    [Crossref] [PubMed]
  29. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
    [Crossref]
  30. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
    [Crossref] [PubMed]
  31. J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).
  32. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
    [Crossref] [PubMed]
  33. C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
    [Crossref] [PubMed]
  34. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
    [Crossref]
  35. Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
    [Crossref] [PubMed]
  36. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref] [PubMed]
  37. Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Opt. Express 22(15), 18224–18231 (2014).
    [Crossref] [PubMed]
  38. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
    [Crossref] [PubMed]
  39. D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
    [Crossref] [PubMed]
  40. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
    [Crossref] [PubMed]
  41. C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
    [Crossref] [PubMed]
  42. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  43. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
    [Crossref] [PubMed]
  44. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  45. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
    [Crossref] [PubMed]
  46. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref] [PubMed]
  47. T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  48. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  49. “ https://kb.lumerical.com/en/sweeps_optimization.html .

2018 (2)

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

2017 (6)

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
[Crossref] [PubMed]

S. Radosavljevic, B. Kuyken, and G. Roelkens, “Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform,” Opt. Express 25(16), 19034–19042 (2017).
[Crossref] [PubMed]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

2016 (3)

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (9)

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
[Crossref] [PubMed]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Opt. Express 22(15), 18224–18231 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (8)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared,” IEEE Photon. Technol. Lett. 24(17), 1536–1538 (2012).
[Crossref]

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

2011 (3)

2010 (4)

2009 (2)

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

2006 (1)

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Absil, P.

Agarwal, A.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Alonso-Ramos, C.

Alonso-Ramos, C. A.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Antelius, M.

Baets, R.

Bedard, D.

Benedikovic, D.

Berroth, M.

Bogaerts, W.

Bojko, R.

Boutami, S.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Bucio, T. D.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Burghartz, J.

Butschke, J.

Carpenter, L. G.

Cerutti, L.

Chakravarty, S.

Chang, S.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

Chang, Y.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

Chang-Hasnain, C.

Cheben, P.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Chen, R. T.

Chen, X.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3(9), 1523–1536 (2013).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Chen, Y. M.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

Cheng, Z.

J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
[Crossref] [PubMed]

Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

Chrostowski, L.

Covey, J.

Ctyroký, J.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Dado, M.

Dave, U.

Densmore, A.

Ding, Y.

Dirk, T.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Dong, B.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Dries Van, T.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Duan, G.-H.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Durantin, C.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Favreau, J.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Fédéli, J. M.

Fédéli, J.-M.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Flueckiger, J.

Frederik Van, L.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Fromherz, T.

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

Fung, C. K. Y.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Gardes, F. Y.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Gassenq, A.

Gawith, C. B. E.

Gencarelli, F.

Ghosh, S.

Goda, K.

Gopalakrisna, K.-L.

Green, W.

Guo, T. X.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Guo, X.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Gylfason, K. B.

Halir, R.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Hattasan, N.

Healy, N.

Hens, Z.

Hensley, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Ho, C. P.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Hon Ki, T.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

Hosseini, A.

Hu, C.

Hu, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Hu, T.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Hvam, J. M.

K. Yvind and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Jaeger, N. A. F.

Jakoby, B.

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

Janz, S.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Jia, H.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

Kang, J.

Kasberger, J.

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

Katletz, S.

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

Ke, X.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

Khokhar, A. Z.

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Kimerling, L. C.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Kubby, J.

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

Kunze, A.

Kuyken, B.

Kwong, D.

Kwong, D. L.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Lai, W. C.

Lamontagne, B.

Lapointe, J.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Lee, C.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Leo, F.

Lepage, G.

Letzkus, F.

Li, B.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Li, C.

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Li, J.

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

Lin, P. T.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Littlejohns, C.

Littlejohns, C. G.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Liu, L.

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

Liu, X.

Lo, G. Q.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

Lo, P. G. Q.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Loncar, M.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Loo, R.

Luo, X.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Luque-González, J. M.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Luzinov, I.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Ma, R.

Ma, Y.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

Malik, A.

Mashanovich, G.

Mashanovich, G. Z.

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Melanie, A.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Mitchell, C. J.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Mittal, V.

Mizaikoff, B.

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[Crossref] [PubMed]

Molina-Fernández, I.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Molina-Fernández, Í.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Muneeb, M.

Murugan, G. S.

Musgraves, J. D.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Nedeljkovic, M.

Ortega-Moñux, A.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Osgood, R.

Ou, H.

Patel, D.

Peacock, A. C.

Penades, J. S.

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Peter, B.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Peucheret, C.

Plant, D. V.

Radosavljevic, S.

Reed, G. T.

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

Richardson, K.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Rodriguez, J.-B.

Roel, B.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Roelkens, G.

Ryckeboer, E.

Ryckeboer, E. M. P.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared,” IEEE Photon. Technol. Lett. 24(17), 1536–1538 (2012).
[Crossref]

Saeed, A.

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

Samani, A.

Sánchez-Postigo, A.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Schmid, J. H.

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Schröder, H.

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Selvaraja, S.

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Shen, L.

Shi, W.

Shimura, Y.

Sieger, M.

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[Crossref] [PubMed]

Singh, V.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Sohlström, H.

Song, Q.

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

Stankovic, S.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

Subbaraman, H.

Sun, W.

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

Takenaka, M.

Tournié, E.

Tsang, H. K.

J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
[Crossref] [PubMed]

Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

Uvin, S.

Van Campenhout, J.

Van Thourhout, D.

Veerasubramanian, V.

Verheyen, P.

Vermeulen, D.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared,” IEEE Photon. Technol. Lett. 24(17), 1536–1538 (2012).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

Vincent, B.

Vivien, L.

Vogel, W.

Wang, H.

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

Wang, S.

Wang, X.

Wang, Y.

Wangüemert-Pérez, J. G.

Wei, J.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

Wen, X.

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

Wilkinson, J. S.

Wim, B.

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Wong, C. Y.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

Wray, P.

Wu, W.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

Xia, C.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

Xiao, T.-H.

Xu, D. X.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Xu, D.-X.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Xu, K.

Xu, X.

Yang, J.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

Yang, W.

Yu, M.

Yun, H.

Yvind, K.

Zaoui, W. S.

Zhang, H.

Zhang, J.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

Zhenzhou, C.

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

Zhong, Q.

Zhou, W.

Zhu, L.

Zou, Y.

Anal. Chem. (1)

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

K. Yvind and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Kasberger, A. Saeed, T. Fromherz, S. Katletz, and B. Jakoby, “Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor,” IEEE J. Quantum Electron. 47(7), 950–958 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Dong, X. Luo, T. Hu, T. X. Guo, H. Wang, D. L. Kwong, P. G. Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

IEEE Photon. J. (2)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

C. Zhenzhou, C. Xia, C. Y. Wong, X. Ke, C. K. Y. Fung, Y. M. Chen, and T. Hon Ki, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (3)

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared,” IEEE Photon. Technol. Lett. 24(17), 1536–1538 (2012).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

IEEE Photonics J. (2)

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G. Q. Lo, “Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics,” IEEE Photonics J. 9, 1–10 (2017).

C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Lab Chip (1)

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Opt. Express (11)

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Opt. Express 22(15), 18224–18231 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
[Crossref] [PubMed]

S. Radosavljevic, B. Kuyken, and G. Roelkens, “Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform,” Opt. Express 25(16), 19034–19042 (2017).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. E. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref] [PubMed]

Opt. Lett. (14)

J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42(11), 2094–2097 (2017).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D. X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
[Crossref] [PubMed]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (3)

J. Kubby, X. Chen, Z. Cheng, C. K. Y. Fung, H. K. Tsang, and G. T. Reed, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE 8266, 82660I (2012).

H. Schröder, R. T. Chen, J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

P. Cheben, J. Čtyroký, I. Molina-Fernández, A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges,” Proc. SPIE 10242, 102420E (2017).

Other (3)

J. Li, L. Liu, W. Sun, X. Wen, K. Xu, and Q. Song, “The 2-μm fully-etched silicon grating coupler,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–3 (2017).
[Crossref]

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, “High performance silicon-on-sapphire subwavelength grating coupler for 2.7µm wavelength,” in 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), 2015), 67–72.

“ https://kb.lumerical.com/en/sweeps_optimization.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Summary of the state-of-the-art demonstrations of the near- and mid-infrared grating couplers.
Fig. 2
Fig. 2 (a) The top-viewed schematic of SWGC with inset of the zoomed-in SWG. (b) The schematic of grating coupler with input fiber placed at the angle of θ. (c) The SEM image of SWGC, device C2. (d) The SEM image of uniform SWG of device A1. (e) The SEM image of apodized SWG of device C2. (e) The SEM image of apodized SWG of device D1.
Fig. 3
Fig. 3 (a) The correlation between the effective index and the width of the high index region by curve fitting. Inset: the schematic of 1D approximation EMT. (b) The simulated directionality of device A1 with different device layer thickness when the BOX layer is 3-μm thick from 3.5 μm to 3.9 μm. (c) The dependence of the simulated directionality on BOX layer thickness when the device layer is 400-nm thick for device A1. (d) The dependence of the simulated directionality on device layer thickness when the BOX layer is 3-μm thick for device A1.
Fig. 4
Fig. 4 (a) The mid-infrared optical photonics measurement setup for grating coupler. (b) The measured waveguide propagation loss spectrum. Insets: Layout of designs showing each grating coupler design with five different waveguide lengths, SEM photo and the schematic of fiber coupling.
Fig. 5
Fig. 5 (a) The simulated spectra of the uniform SWGC design A1, A2 and A3. (b) The measured spectra of the uniform SWGC device A1, A2 and A3 with an example of 3 dB and 1 dB bandwidth extraction of device A3 through parabola fit. (c) The simulated spectra of the uniform SWGC design B1, B2 and B3. (d) The measured spectra of the uniform SWGC device B1, B2 and B3.
Fig. 6
Fig. 6 (a) The simulated spectra of the apodized SWGC design C1, C2 and C3. (b) The measured spectra of the apodized SWGC device C1, C2 and C3. (c) The simulated spectra of the apodized SWGC design C2 and C4. Inset: the single row grating schematic showing the apodized f y . (d) The measured spectra of the apodized SWGC device C2 and C4. (e) The simulated spectra of the apodized SWGC design D1 and D2. Inset: the single row grating schematic showing the apodized f x . (f) The measured spectra of the apodized SWGC device D1 and D2.
Fig. 7
Fig. 7 (a) The simulated electric field distribution of design A1 (top view). (b) The simulated index of mode profile of design A1 (top view). (c) The simulated electric field distribution of design C3 (top view). (d) The simulated index of mode profile of design C3 (top view). (e) The simulated index of mode profile and electric field profile along x-axis in design A1. (f) The simulated index of mode profile and electric field profile along x-axis in design C3. (g) The diffracted modes from uniform coupler A1 and B1 versus the Gaussian profile of fiber input mode. (h) The diffracted modes from apodized coupler C3 and D1 versus the Gaussian profile of fiber input mode.
Fig. 8
Fig. 8 (a) The simulated and measured maximum coupling efficiency of all design/devices with the marking of champion data. (b) The simulated and measured peak wavelength of all design/devices. (c) The simulated and measured 1 dB bandwidth of all design/devices with the marking of champion data. (d) The simulated and measured 3 dB bandwidth of all design/devices with the marking of champion data.
Fig. 9
Fig. 9 (a) The measured coupling efficiency spectra of device B3 and C3 with the shaded area. The figure of merit Area’s calculation formula is inserted. The Area of device B3 is 0.0489 nm and 0.0401 nm, respectively. (b) The simulated and measured Area of all design/devices.

Tables (2)

Tables Icon

Table 1 Design Summary of the Uniform SWGC

Tables Icon

Table 2 Design Summary of the Apodized SWGC

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n Lx = 1 f y n Ly 2 + (1 f y ) n Hy 2
n eff = f x n Lx +(1 f x ) n Hx ,
Δ λ 1dB n c cosθ | n eff ( λ p ) n c sinθ λ p d n eff (λ) dλ |
Area= π 4ln2 ×FWHM×C E max ,

Metrics