Abstract

For highly sensitive and accurate acetylene (C2H2) detection, a near-infrared (NIR) off-axis integrated-cavity output spectroscopy (OA-ICOS) sensor system based on an ultra-compact cage-based absorption cell was proposed. The absorption cell with dimensions of 10 cm × 8 cm × 6 cm realized a dense-pattern and an easily-aligned stable optical system. The OA-ICOS sensor system employed a 6cm-long optical cavity that was formed by two mirrors with a reflectivity of 99.35% and provided an effective absorption path length of ∼9.28 m. The performance of the C2H2 sensor system based on two measurement schemes, i.e. laser direct absorption spectroscopy (LDAS) and wavelength modulation spectroscopy (WMS) is reported. A NIR distributed feedback (DFB) laser was employed for targeting a C2H2 absorption line at 6523.88 cm−1. An Allan deviation analysis yielded a detection sensitivity of 760 parts-per-billion in volume (ppbv) for an averaging time of 304 s using the LDAS-based OA-ICOS. A detection sensitivity of 85 ppbv for an averaging time of 250 s was obtained using the WMS-based OA-ICOS, which was further improved by a factor of ~9 compared to the result obtained with the LDAS method. The proposed sensor system has the advantages of reduced size and cost with acceptable detection sensitivity, which is suitable for applications in trace gas sensing in harsh environments and weight-limited balloon-embedded observations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental-based comparison between off-axis integrated cavity output spectroscopy and multipass-assisted wavelength modulation spectroscopy at 7.7 µm

Faisal Nadeem, Julien Mandon, Simona M. Cristescu, Amir Khodabakhsh, and Frans J. M. Harren
OSA Continuum 2(9) 2667-2682 (2019)

Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing

Jingjing Wang, Xing Tian, Yang Dong, Gongdong Zhu, Jiajin Chen, Tu Tan, Kun Liu, Weidong Chen, and Xiaoming Gao
Opt. Express 27(21) 30517-30529 (2019)

Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection

Yury A. Bakhirkin, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, and Frank K. Tittel
Appl. Opt. 43(11) 2257-2266 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
    [Crossref]
  2. Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
    [Crossref]
  3. K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
    [Crossref]
  4. G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
    [Crossref] [PubMed]
  5. Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
    [Crossref]
  6. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 microm,” Opt. Express 14(3), 1304–1313 (2006).
    [Crossref] [PubMed]
  7. L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
    [Crossref]
  8. M. Gianella and G. A. D. Ritchie, “Cavity-enhanced near-Infrared laser absorption spectrometer for the measurement of acetonitrile in breath,” Anal. Chem. 87(13), 6881–6889 (2015).
    [Crossref] [PubMed]
  9. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
    [Crossref]
  10. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
    [Crossref]
  11. G. Kowzan, K. F. Lee, M. Paradowska, M. Borkowski, P. Ablewski, S. Wójtewicz, K. Stec, D. Lisak, M. E. Fermann, R. S. Trawiński, and P. Masłowski, “Self-referenced, accurate and sensitive optical frequency comb spectroscopy with a virtually imaged phased array spectrometer,” Opt. Lett. 41(5), 974–977 (2016).
    [Crossref] [PubMed]
  12. M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Design of cavity-enhanced absorption cell for reducing transit-time broadening,” Opt. Lett. 39(18), 5277–5280 (2014).
    [Crossref] [PubMed]
  13. M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
    [Crossref] [PubMed]
  14. V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
    [Crossref]
  15. J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
    [PubMed]
  16. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
    [Crossref] [PubMed]
  17. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
    [Crossref]
  18. W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
    [Crossref]
  19. R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
    [Crossref]
  20. http://www.spectraplot.com/absorption
  21. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
    [Crossref] [PubMed]
  22. K. Liu, T. Liu, J. Jiang, G. D. Peng, H. Zhang, D. Jia, Y. Wang, W. Jing, and Y. Zhang, “Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection,” J. Lightwave Technol. 29(1), 15–21 (2011).
    [Crossref]
  23. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
    [Crossref] [PubMed]

2017 (2)

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

2016 (3)

2015 (3)

M. Nations, S. Wang, C. S. Goldenstein, K. Sun, D. F. Davidson, J. B. Jeffries, and R. K. Hanson, “Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy,” Appl. Opt. 54(29), 8766–8775 (2015).
[Crossref] [PubMed]

M. Gianella and G. A. D. Ritchie, “Cavity-enhanced near-Infrared laser absorption spectrometer for the measurement of acetonitrile in breath,” Anal. Chem. 87(13), 6881–6889 (2015).
[Crossref] [PubMed]

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

2014 (2)

M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, “Design of cavity-enhanced absorption cell for reducing transit-time broadening,” Opt. Lett. 39(18), 5277–5280 (2014).
[Crossref] [PubMed]

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

2013 (1)

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

2012 (1)

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

2011 (1)

2010 (1)

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

2007 (1)

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

2006 (2)

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 microm,” Opt. Express 14(3), 1304–1313 (2006).
[Crossref] [PubMed]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

2005 (1)

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

2002 (2)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

2001 (2)

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Abe, M.

Ablewski, P.

Anderson, J. G.

Baer, D. S.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

Borkowski, M.

Canosa-Mas, C. E.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

Cao, Y.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Centeno, R.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

Cha, H.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Chau, G.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

Chen, W.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Chenevier, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Cousin, J.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Cristescu, S. M.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

Davidson, D. F.

De Natale, P.

Dong, L.

Durry, G.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Farooq, A.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Fermann, M. E.

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Gagliardi, G.

Gao, X.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Gianella, M.

M. Gianella and G. A. D. Ritchie, “Cavity-enhanced near-Infrared laser absorption spectrometer for the measurement of acetonitrile in breath,” Anal. Chem. 87(13), 6881–6889 (2015).
[Crossref] [PubMed]

Gluszek, A. K.

Goldenstein, C. S.

Griffin, R. J.

Gupta, M.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

Hanson, R. K.

Harren, F. J. M.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

He, Q. X.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Ho, H. L.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Huang, T.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Hubbe, J. M.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Hubbell, M. R.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Hudzikowski, A. J.

Iwakuni, K.

Jaulin, K.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

Jeffries, J. B.

Jia, D.

Jiang, J.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

K. Liu, T. Liu, J. Jiang, G. D. Peng, H. Zhang, D. Jia, Y. Wang, W. Jing, and Y. Zhang, “Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection,” J. Lightwave Technol. 29(1), 15–21 (2011).
[Crossref]

Jin, W.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Jing, W.

Joly, L.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Jost, H.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Kassi, S.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Kasyutich, V. L.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

Kerstel, E.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

Kluzek, C. D.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Kowzan, G.

Lapson, L.

Lee, K. F.

Leen, J. B.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Li, B.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Li, C.

Li, C. R.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Li, J. S.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Lisak, D.

Liu, H. F.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Liu, K.

Liu, T.

Lopez, J.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Luo, Y. T.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Ma, G. M.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Maddaloni, P.

Malara, P.

Mandon, J.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

Maslowski, P.

Morville, J.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Nasir, E. F.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Nations, M.

O’Keefe, A.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

Okubo, S.

Paradowska, M.

Parvitte, B.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

Peng, G. D.

Pfrang, C.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

Qi, L.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Ramonet, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Richard, L.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

Ritchie, G. A. D.

M. Gianella and G. A. D. Ritchie, “Cavity-enhanced near-Infrared laser absorption spectrometer for the measurement of acetonitrile in breath,” Anal. Chem. 87(13), 6881–6889 (2015).
[Crossref] [PubMed]

Romanini, D.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

Sanchez, N. P.

Sasada, H.

Schmidt, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Song, H. T.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Stec, K.

Sun, K.

Tittel, F.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Tittel, F. K.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Tomlinson, J. M.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Trawinski, R. S.

Utsav, K. C.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Valant, C.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Vaughan, S.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

Ventrillard, I.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

Wang, S.

Wang, Y.

Wang, Y. D.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Wayne, R. P.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

Wójtewicz, S.

Wu, H.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Wu, T.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Yang, Y. H.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Ye, W.

Yu, X. Y.

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

Zeninari, V.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Zhang, H.

Zhang, W.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Zhang, Y.

Zhao, S. J.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Zhao, W.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

Zheng, C.

Zheng, C. T.

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Anal. Chem. (1)

M. Gianella and G. A. D. Ritchie, “Cavity-enhanced near-Infrared laser absorption spectrometer for the measurement of acetonitrile in breath,” Anal. Chem. 87(13), 6881–6889 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (9)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2–3), 261–265 (2002).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86(2), 353–359 (2007).
[Crossref]

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75(6–7), 755–761 (2002).
[Crossref]

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis,” Appl. Phys. B 122(9), 247–254 (2016).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80(8), 1027–1038 (2005).
[Crossref]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H. Jost, “Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane,” Appl. Phys. B 83(4), 659–667 (2006).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

J. B. Leen, X. Y. Yu, M. Gupta, D. S. Baer, J. M. Hubbe, C. D. Kluzek, J. M. Tomlinson, and M. R. Hubbell, “Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer,” Environ. Sci. Technol. 47(18), 10446–10453 (2013).
[PubMed]

J. Lightwave Technol. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Laser Phys. (1)

Q. X. He, C. T. Zheng, H. F. Liu, B. Li, Y. D. Wang, and F. K. Tittel, “Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation,” Laser Phys. 27(5), 055702 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Sci. Rep. (1)

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing acetylene dissolved in transformer oil by tunable diode laser absorption spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203(21), 311–319 (2014).
[Crossref]

Other (1)

http://www.spectraplot.com/absorption

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup of the OA-ICOS set-up, including an electrical system, an optical system as well as a gas sampling system. DFB: distributed feedback laser; FM: flip mirror; M1and M2: plane mirror; HR: highly-reflective mirror.
Fig. 2
Fig. 2 (a) CAD image of the cage-based absorption cell with dimensions of length (10 cm), width (8 cm) and height (6 cm). (b) CAD image of the cage system with a cavity length of d = 6 cm. (c) Photograph of the fabricated absorption gas cell.
Fig. 3
Fig. 3 (a) HITRAN based absorption spectra of C2H2 (10 ppmv) and H2O (2%) in a spectral range from 6523.5 to 6524.4 cm−1 at a pressure of 760 Torr and an absorption length of 9.28 m. C2H2 and H2O lines are shown in black and red, respectively. (b) Curves of the DFB laser emission wavenumber as a function of the laser drive current at 13.3 °C.
Fig. 4
Fig. 4 (a) Curves of the cavity transmission light power, the output voltage from the detector and the laser current versus scan time within one period. (b) C2H2 absorption spectrum around 6523.88 cm−1 (black line) with a fitted baseline (red line). (c) Calculated absorbance as a function of scan time with a Voigt line shape fitting based on figure (a). (d) Residual between the absorbance line and the fitted Voigt line based on figure (b).
Fig. 5
Fig. 5 (a) Measured maxC2H2 versus calibration time for different C2H2 concentration levels ranging from 0 to 300 ppmv. (b) Experimental data and fitting curve of C2H2 concentration versus maxC2H2.
Fig. 6
Fig. 6 (a) C2H2 concentration measurements of the sample with zero concentration for a time period of ~1 hour. (b) Allan deviation plot as a function of averaging time, based on the data shown in Fig. 6(a).
Fig. 7
Fig. 7 Measured amplitude of the 2f signal and the modulation depth as a function of modulation amplitude of the sinewave signal.
Fig. 8
Fig. 8 (a) Measured 2f amplitude, max(2f), versus calibration time for different C2H2 concentration levels ranging from 0 to 400 ppmv. (b) Experimental data and fitting curve of the C2H2 concentration versus max (2f).
Fig. 9
Fig. 9 (a) C2H2 concentration measurements of N2 for a time period of ~1 hour. (b) Allan deviation plot as a function of averaging time, based on the data shown in Fig. 9(a).
Fig. 10
Fig. 10 The obtained 2f absorption spectrum of C2H2 at a concentration level of 550 ppmv at a pressure of 760 Torr.

Tables (1)

Tables Icon

Table 1 Performance comparison between the LDAS-based and WMS-based OA-ICOS sensor systems

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A = ln ( V 1 / V 2 )
C = 31.427 × max C 2 H 2 55.226
C = 317.482 × max ( 2 f ) 30.723

Metrics