Abstract

Antisymmetric multimode nanobeam photonic crystal cavities (AM-NPCs) are proposed and demonstrated in this paper. Due to transverse symmetry-breaking of the antisymmetric multimode periodic waveguide, anti-crossing of the fundamental mode and 1st-order mode is realized and confirmed by band structure calculation. Two-mode filtering and reflection-free cavity filters based on this characteristic are demonstrated. Experimental results on silicon-on-insulator platform shows that broadband (> 100 nm) reflection suppression (< −10 dB) and high-Q (7 × 104) AM-NPCs can be achieved using existed design methodology and fabrication facility. We also explain resonance splitting of the measured transmission spectra and find resonance-enhanced mode-conversion phenomena in the AM-NPCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities

Qimin Quan and Marko Loncar
Opt. Express 19(19) 18529-18542 (2011)

High-Q, low index-contrast polymeric photonic crystal nanobeam cavities

Qimin Quan, Ian B. Burgess, Sindy K. Y. Tang, Daniel L. Floyd, and Marko Loncar
Opt. Express 19(22) 22191-22197 (2011)

Silicon optical filter with transmission peaks in wide stopband obtained by anti-symmetric photonic crystal with defect in multimode waveguides

Manuel Mendez-Astudillo, Hideaki Okayama, and Hirochika Nakajima
Opt. Express 26(2) 1841-1850 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
    [Crossref]
  2. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [Crossref]
  3. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [Crossref]
  4. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO_2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
    [Crossref] [PubMed]
  5. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref] [PubMed]
  6. K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
    [Crossref]
  7. G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
    [Crossref]
  8. J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22, 3271–3283 (2014).
    [Crossref] [PubMed]
  9. Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25, 19479–19486 (2017).
    [Crossref] [PubMed]
  10. Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
    [Crossref]
  11. S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40, 5351–5354 (2015).
    [Crossref] [PubMed]
  12. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
    [Crossref]
  13. T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
    [Crossref]
  14. T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
    [Crossref] [PubMed]
  15. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18, 5654–5660 (2010).
    [Crossref] [PubMed]
  16. B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
    [Crossref]
  17. A. Brimont, J. Vicente Galán, J. Maria Escalante, J. Martí, and P. Sanchis, “Group-index engineering in silicon corrugated waveguides,” Opt. Lett. 35, 2708–2710 (2010).
    [Crossref] [PubMed]
  18. P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
    [Crossref]
  19. X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39, 6973–6976 (2014).
    [Crossref] [PubMed]
  20. C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push–pull mode,” Opt. Lett. 40, 4206–4209 (2015).
    [Crossref] [PubMed]
  21. Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24, 20542–20553 (2016).
    [Crossref] [PubMed]
  22. H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
    [Crossref] [PubMed]
  23. H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
    [Crossref] [PubMed]
  24. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  25. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  27. H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
    [Crossref]
  28. Q. Huang, Q. Liu, and J. Xia, “Traveling wave-like Fabry-Perot resonator-based add-drop filters,” Opt. Lett. 42, 5158–5161 (2017).
    [Crossref] [PubMed]
  29. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
    [Crossref]
  30. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. a. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
    [Crossref] [PubMed]
  31. P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).
  32. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
    [Crossref]

2017 (5)

2016 (3)

2015 (4)

2014 (4)

2013 (3)

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

2012 (1)

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
[Crossref]

2011 (1)

2010 (5)

2008 (1)

2001 (1)

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

1995 (1)

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Ahn, B.-H.

Beaudoin, G.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bojko, R.

Bouchoule, S.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Brimont, A.

Buchwald, W.

Burgess, I. B.

Chau, F. S.

T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
[Crossref] [PubMed]

T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
[Crossref]

Chrostowski, L.

Crosnier, G.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Dai, T.

De La Rue, R. M.

Deng, J.

T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
[Crossref] [PubMed]

T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
[Crossref]

Deotare, P. B.

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
[Crossref]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Floyd, D. L.

Flueckiger, J.

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Frank, I. W.

Gao, W.

Ge, X.

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
[Crossref]

He, S.

Hendrickson, J.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Hu, T.

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Huang, Q.

Huang, Y.

Hwang, Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ilic, R.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Jaeger, N. a. F.

Jeong, K.-Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Ji, Y.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Jiang, J.

Jiang, X.

Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25, 19479–19486 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Jie, K.

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, N. P.

Johnson, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kang, J.-H.

Kawasaki, K.

Kim, H.-M.

Kim, K. S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Kim, K.-S.

Kim, M.-K.

Kim, S.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Kita, S.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Kolodziejski, L. A.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Kuramochi, E.

Lee, Y.-H.

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
[Crossref]

Liang, F.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Lim, K.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Lin, T.

T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
[Crossref]

T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
[Crossref] [PubMed]

Liu, Q.

Loncar, M.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Maria Escalante, J.

Martí, J.

Md Zain, A. R.

Min, B.

Monnier, P.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

No, Y.-S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Notomi, M.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Park, H.-G.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Petrich, G. S.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Popovic, M. A.

Poulton, C. V.

Qiu, C.

Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25, 19479–19486 (2017).
[Crossref] [PubMed]

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Qiu, H.

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Quan, Q.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Raineri, F.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Raj, R.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Reif, R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Roh, Y.-G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Sagnes, I.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Sanchez, D.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Sanchis, P.

Seo, M.-K.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Shen, A.

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Shi, P.

Shi, W.

Shi, Y.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Song, J.-H.

Soref, R.

Sorel, M.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Su, Y.

Sweet, J.

Tanabe, T.

Tang, S. K. Y.

Tang, X.

Taniyama, H.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Tian, F.

Tian, H.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Vicente Galán, J.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Wade, M. T.

Wang, C.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Wang, F.

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Wang, M.

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Wang, X.

Wang, Y.

Wang, Z.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

Wu, F.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

Xia, J.

Xu, Z.

Yang, D.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Yang, J.

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Yang, Y.

Yu, H.

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

Yu, P.

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Yun, H.

Zeng, X.

Zhang, Y.

Zhou, G.

T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
[Crossref] [PubMed]

T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
[Crossref]

Zhu, Q.

Appl. Phys. Lett. (5)

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167–169 (1995).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

T. Lin, F. S. Chau, J. Deng, and G. Zhou, “Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Perot and photonic crystal nanobeam cavities,” Appl. Phys. Lett. 107, 223105 (2015).
[Crossref]

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100, 041112 (2012).
[Crossref]

Chin. Phys. Lett. (1)

P. Yu, T. Hu, C. Qiu, A. Shen, H. Qiu, F. Wang, X. Jiang, M. Wang, and J. Yang, “Ultracompact, Reflection-Free and High-Efficiency Channel Drop Filters Based on Photonic Crystal Nanobeam Cavities,” Chin. Phys. Lett. 30, 034210 (2013).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and high-order side-coupled air-mode nanobeam photonic crystal cavities in silicon,” IEEE Photonics Technol. Lett. 28, 2121–2124 (2016).

J. Light. Technol. (1)

H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, and H. Yu, “Silicon Add-Drop Filter Based on Multimode Bragg Sidewall Gratings and Adiabatic Couplers,” J. Light. Technol. 35, 1705–1709 (2017).
[Crossref]

Nat. Commun. (1)

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Nat. Photonics (1)

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[Crossref]

Opt. Express (10)

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO_2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22, 3271–3283 (2014).
[Crossref] [PubMed]

Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25, 19479–19486 (2017).
[Crossref] [PubMed]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24, 20542–20553 (2016).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18, 5654–5660 (2010).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. a. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[Crossref]

Opt. Lett. (8)

Q. Huang, Q. Liu, and J. Xia, “Traveling wave-like Fabry-Perot resonator-based add-drop filters,” Opt. Lett. 42, 5158–5161 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41, 2450–2453 (2016).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42, 3912–3915 (2017).
[Crossref] [PubMed]

X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39, 6973–6976 (2014).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push–pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref] [PubMed]

A. Brimont, J. Vicente Galán, J. Maria Escalante, J. Martí, and P. Sanchis, “Group-index engineering in silicon corrugated waveguides,” Opt. Lett. 35, 2708–2710 (2010).
[Crossref] [PubMed]

T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, and J. Deng, “Design of mechanically-tunable photonic crystal split-beam nanocavity,” Opt. Lett. 40, 3504–3507 (2015).
[Crossref] [PubMed]

S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40, 5351–5354 (2015).
[Crossref] [PubMed]

Other (2)

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images (only the left half parts shown) of (a) a traditional symmetric NPC and (b) an antisymmetric AM-NPC.
Fig. 2
Fig. 2 (a) Band structure (TE-polarized modes) of the antisymmetric multimode periodic waveguide, (b) and (c) Mode profiles (Ey @z = 0) of the degenerate resonant states of the AM-NPC. (The blue and red solid curves correspond to the TE0 and TE1 modes of the AMPW (r = 0.15a) respectively. The dotted curves are the bands near the bandgap of r = 0.31a AMPW. The dot-dash curves are the bands of the channel waveguide with equivalent refractive index of the r = 0.15a AMPW. i–vi correspond to the profiles of Bloch modes in the bands where the arrows indicate.)
Fig. 3
Fig. 3 Mode profiles of (a,b) on-resonance transmission and (c,d) off-resonance reflection waves of the AM-NPC at z = 0 plane.
Fig. 4
Fig. 4 Reflection of the TE0−TE1 and TE0−TE0 of the tapered antisymmetric multi-mode periodic waveguide mirror (N=40).
Fig. 5
Fig. 5 Layouts of the designed (a) reflection-free AM-NPC and (b) two-mode filtering AM-NPC.
Fig. 6
Fig. 6 Measured spectra and enlarged views for fundamental modes of the fabricated (a,b) control NPC (a = 350 nm, w = 500 nm) and (c,d) AM-NPC (a = 350 nm, w = 800 nm).
Fig. 7
Fig. 7 Measured transmission and mode extinction ratio of the fabricated AM-NPCs (a = 330 nm, w = 800 nm) as the input light is (a,b) TE1 and (c,d) TE0 mode.

Metrics