Abstract

We proposed and demonstrated a wavelength-division multiplexing (WDM) optical beam-steering device consisting of a thermally controlled doubly periodic Si two-dimensional bulk photonic crystal waveguide and coupled microring multiplexers. Beam forming and steering while maintaining a sharp profile is much easier in this device than with optical phased arrays which need the fine phase control. By dividing the range of beam-steering angles into different wavelength channels, it is possible to cover a wide range of angles, even when each angle is small. In this study, we fabricated a device with four wavelength channels, each of which showed beam steering of 4°–5° as a result of heating, resulting in a total of 16°. Two-dimensional steering is also achieved by loading a collimator lens and selecting one waveguide from those arrayed. We evaluated 112 resolution points with four wavelengths and 448 points in total by switching four waveguides. If this WDM concept is introduced into light detection and ranging and the number of wavelengths is increased, it will be possible to increase the sensing throughput, which is usually constrained by the round-trip time of light, by simultaneous parallel operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide

Hiroshi Abe, Moe Takeuchi, Goro Takeuchi, Hiroyuki Ito, Tomoki Yokokawa, Keisuke Kondo, Yuya Furukado, and Toshihiko Baba
Opt. Express 26(8) 9389-9397 (2018)

Thermally controlled Si photonic crystal slow light waveguide beam steering device

Goro Takeuchi, Yosuke Terada, Moe Takeuchi, Hiroshi Abe, Hiroyuki Ito, and Toshihiko Baba
Opt. Express 26(9) 11529-11537 (2018)

Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna

Yuya Furukado, Hiroshi Abe, Yosuke Hinakura, and Toshihiko Baba
Opt. Express 26(14) 18222-18229 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  2. C. Knoernschild, C. Kim, F. P. Lu, and J. Kim, “Multiplexed broadband beam steering system utilizing high speed MEMS mirrors,” Opt. Express 17(9), 7233–7244 (2009).
    [Crossref] [PubMed]
  3. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
    [Crossref] [PubMed]
  4. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  6. B. W. Yoo, M. Megens, T. Chan, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” Opt. Express 21(10), 12238–12248 (2013).
    [Crossref] [PubMed]
  7. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref] [PubMed]
  8. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  9. C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24(17), 19211–19227 (2016).
    [Crossref] [PubMed]
  10. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
    [Crossref] [PubMed]
  11. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  12. K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
    [Crossref] [PubMed]
  13. H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33(2), 304–310 (2015).
    [Crossref]
  14. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
    [Crossref] [PubMed]
  15. G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
    [Crossref] [PubMed]

2018 (2)

2017 (2)

2016 (2)

2015 (1)

2013 (2)

2012 (1)

2011 (2)

2010 (1)

2009 (2)

Abe, H.

Aoyagi, I.

Baba, T.

Baets, R.

Bedard, D.

Bogaerts, W.

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Cao, Z.

Chan, T.

Chang-Hasnain, C. J.

Cheben, P.

Chen, X.

Coldren, L. A.

Cole, D. B.

Densmore, A.

Doylend, J. K.

Feshali, A.

Furukado, Y.

Hachuda, S.

Halir, R.

Heck, J.

Heck, M. J. R.

Horsley, D. A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Houdré, R.

Hutchison, D. N.

Ishikura, N.

Ito, H.

Ito, K.

Jágerská, J.

Janz, S.

Kagami, M.

Kato, S.

Kim, C.

Kim, J.

Kim, W.

Knoernschild, C.

Kondo, K.

Koonen, T.

Koyama, F.

Kumar, R.

Lapointe, J.

Le Thomas, N.

Lu, F. P.

Ma, R.

Matsubara, H.

Megens, M.

Molina-Fernández, I.

Niclass, C.

Oh, C. W.

Peters, J. D.

Phare, C. T.

Poulton, C. V.

Raval, M.

Rong, H.

Schmid, J. H.

Soga, M.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Sun, T.

Takeuchi, G.

Takeuchi, M.

Tangdiongga, E.

Tatebe, T.

Terada, Y.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tsang, H. K.

Van Acoleyen, K.

Vermeulen, D.

Watts, M. R.

Wu, M. C.

Xu, D. X.

Yaacobi, A.

Yang, W.

Yokokawa, T.

Yoo, B. W.

J. Lightwave Technol. (1)

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (7)

B. W. Yoo, M. Megens, T. Chan, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” Opt. Express 21(10), 12238–12248 (2013).
[Crossref] [PubMed]

C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24(17), 19211–19227 (2016).
[Crossref] [PubMed]

H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
[Crossref] [PubMed]

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref] [PubMed]

C. Knoernschild, C. Kim, F. P. Lu, and J. Kim, “Multiplexed broadband beam steering system utilizing high speed MEMS mirrors,” Opt. Express 17(9), 7233–7244 (2009).
[Crossref] [PubMed]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 WDM beam steering device. (a) Schematic. (b)–(e) Fabricated device. (b), (c) WDM MUX circuit. (d), (e) Thermally controlled doubly periodic BPCW beam steering device.
Fig. 2
Fig. 2 Theoretical characteristics of BPCW beam steering device. (a) Schematic. (b) Photonic band. The gray area represents the light cone of the SiO2 cladding. (c) Group index ng spectrum. (d) Beam angle θ in longitudinal direction. (e) Radiation coefficient αrad.
Fig. 3
Fig. 3 Through spectrum (blue line) and drop spectrum (red line) of coupled microring MUX. (a) Wide wavelength range. (b) Magnified view of λ ≈1.55 μm. The light and dark colors represent before and after thermal tuning, respectively.
Fig. 4
Fig. 4 Characteristics of BPCW. (a) Top view of device and NFP for λ = 1.55 μm. The lower graph is the intensity position profile, attenuated exponentially. (b) FFP for λ = 1.55 μm. θ-direction angular profile by (c) wavelength sweep and (d) heating BPCW. (e) Comparison of beam divergence angles. (f) Steering of spot beam formed with rod lens.
Fig. 5
Fig. 5 Thermal tuning of 4-ch WDM circuit. (a) As fabricated. (b) After tuning. Each color corresponds to one channel.
Fig. 6
Fig. 6 4λ-multi-beam steering. (a) Observed FFPs of radiated beam. (b) Longitudinal angular profile at each channel for heating power Pi. (c) θ–Pi characteristics. (d) Longitudinal divergence angle. (e) Steering of spot beam formed by rod lens. Threshold processing was performed to suppress the background.
Fig. 7
Fig. 7 2D beam steering observed by a combination of the wavelength sweep and switching of the BPCW.

Metrics