Abstract

We report measurements of absorption, gain, and the lifetime of the transition 3H63F4 for three commercially available thulium-doped single clad silica fibers. These measurements are used in a steady-state simulation of thulium-doped fiber amplifiers (TDFAs). Comparison of simulation and experimental results yield good agreement for a single stage TDFA at 1952 nm and a tandem TDFA at 1910 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multistage single clad 2  μm TDFA with a shared L-band pump source

Robert E. Tench, Clement Romano, and Jean-Marc Delavaux
Appl. Opt. 57(21) 5948-5955 (2018)

Thulium-doped fiber amplifier for optical communications at 2 µm

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson
Opt. Express 21(8) 9289-9297 (2013)

Supercontinuum generation from ~1.9 to 4.5 μmin ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan
J. Opt. Soc. Am. B 28(10) 2486-2498 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  2. B. J. Cole, Optimization of Tm3+ in silica for use as active fiber devices (1996), https://catalog.libraries.rutgers.edu/vufind/Record/1281437 .
  3. W. Renard, “Etude et réalisation de sources lasers fibrées impulsionnelles de forte puissance autour de 2 µm,” (2012), https://pastel.archives-ouvertes.fr/pastel-00764940/ .
  4. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  5. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
    [Crossref]
  6. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
    [Crossref]
  7. D. A. Simpson, “Spectroscopy of thulium doped silica glass” (2008), http://vuir.vu.edu.au/1470/ .
  8. R. E. Tench and M. Shimizu, “Fluorescence-based measurement of g*(λ) for erbium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 15(8), 1559–1564 (1997).
    [Crossref]
  9. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, 1st ed. (Wiley-Interscience, 1994).
  10. C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
    [Crossref]
  11. C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).
  12. M. A. Khamis and K. Ennser, “Theoretical model of a thulium-doped fiber amplifier pumped at 1570 nm and 793 nm in the presence of cross relaxation,” J. Lightwave Technol. 34(24), 5675–5681 (2016).
    [Crossref]
  13. R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
    [Crossref]
  14. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped fiber lasers,” J. Lightwave Technol. 17(5), 759–764 (1999).
    [Crossref]

2018 (1)

R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
[Crossref]

2017 (1)

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

2016 (1)

2009 (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

2006 (1)

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

1999 (1)

1997 (1)

R. E. Tench and M. Shimizu, “Fluorescence-based measurement of g*(λ) for erbium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 15(8), 1559–1564 (1997).
[Crossref]

1991 (1)

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Agger, S. D.

Burrus, C. A.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Delavaux, J.-M.

R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
[Crossref]

DiGiovanni, D. J.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Dutta, N. K.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

Ennser, K.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Giles, C. R.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped fiber lasers,” J. Lightwave Technol. 17(5), 759–764 (1999).
[Crossref]

Jaouën, Y.

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

Khamis, M. A.

King, T. A.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Povlsen, J. H.

Raybon, G.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Romano, C.

R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
[Crossref]

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Shimizu, M.

R. E. Tench and M. Shimizu, “Fluorescence-based measurement of g*(λ) for erbium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 15(8), 1559–1564 (1997).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Tench, R. E.

R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
[Crossref]

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

R. E. Tench and M. Shimizu, “Fluorescence-based measurement of g*(λ) for erbium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 15(8), 1559–1564 (1997).
[Crossref]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Williams, G. M.

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photonics Technol. Lett. 3(4), 363–365 (1991).
[Crossref]

R. E. Tench, C. Romano, and J.-M. Delavaux, “Broadband 2 W output power tandem thulium-doped single clad fiber amplifier at 2 µm,” IEEE Photonics Technol. Lett. 30(5), 503–506 (2018).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1–3), 197–203 (2004).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

C. Romano, R. E. Tench, Y. Jaouën, and G. M. Williams, “Simulation and design of a multistage 10W thulium-doped double clad silica fiber amplifier at 2050nm,” Proc. SPIE 10083, 100830H (2017).

Other (4)

B. J. Cole, Optimization of Tm3+ in silica for use as active fiber devices (1996), https://catalog.libraries.rutgers.edu/vufind/Record/1281437 .

W. Renard, “Etude et réalisation de sources lasers fibrées impulsionnelles de forte puissance autour de 2 µm,” (2012), https://pastel.archives-ouvertes.fr/pastel-00764940/ .

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, 1st ed. (Wiley-Interscience, 1994).

D. A. Simpson, “Spectroscopy of thulium doped silica glass” (2008), http://vuir.vu.edu.au/1470/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup for measurement of transition lifetimes.
Fig. 2
Fig. 2 Measured 3F4 lifetime curve with its two exponential fit for the OFS and iXBlue v2 fibers.
Fig. 3
Fig. 3 Experimental setup for measurement of the gain coefficient transition.
Fig. 4
Fig. 4 Absorption, gain from saturated fluorescence, McCumber gain, and directly measured small signal amplification for OFS and iXBlue v1 and v2 commercial Tm-doped fibers.
Fig. 5
Fig. 5 Experimental setup for study of a single stage TDFA.
Fig. 6
Fig. 6 Output power as a function of the counter-pumping power for a 7 m OFS amplifier at 1952 nm.
Fig. 7
Fig. 7 Signal gain as a function of the input signal power at 1952 nm and full co- and counter-propagating pump powers.
Fig. 8
Fig. 8 Experimental and simulated noise figures for the single stage TDFA.
Fig. 9
Fig. 9 Setup for the two stage TDFA.
Fig. 10
Fig. 10 Output Power vs. Pump Power for the two stage TDFA.
Fig. 11
Fig. 11 Gain and Noise Figure vs. Signal Input Power for the two stage TDFA.

Tables (2)

Tables Icon

Table 1 Summary of spectral data for iXBlue and OFS fibers.

Tables Icon

Table 2 List of parameters used in the simulation model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P sp ( λ,L )=T( λ ). 2h. c 0 .Δλ λ 3 [ exp( g*( λ ).L )1 ].
g*( λ )=α( λ )+ P ON ( λ ) P OFF ( λ ) L .
g*( λ )=α( λ ).exp[ h. c 0 k B .T ( 1 λ 1 λ' ) ].
G( λ )= P out ( λ ) P in ( λ ) .
NF( λ )= 1 G( λ ) [ 1+ P ASE forward ( λ ). λ 3 h. c 0 2 .Δλ ].

Metrics