Abstract

Liquid crystal (LC) microcells monolithically integrated on the surface of InGaAs based photodiodes (PDs) are demonstrated. These LC microcells acting as tunable Fabry-Perot filters exhibit a wavelength tunability of more than 100 nm around 1550 nm with less than 10V applied voltage. Using a tunable laser operating in the S and C bands, photocurrent measurements are performed. On a 70 nm tuning range covered with a driving voltage lower than 7V, the average sensitivity for the PD is 0.4 A/W and the spectral linewidth of the LC filter remains constant, showing a FWHM of 1.5 nm. Finally, the emission spectrum from an Er-doped fiber is acquired by using this tunable PD as a micro-spectrometer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier

Kengo Nozaki, Shinji Matsuo, Takuro Fujii, Koji Takeda, Masaaki Ono, Abdul Shakoor, Eiichi Kuramochi, and Masaya Notomi
Optica 3(5) 483-492 (2016)

Wavelength tunable infrared light source based on semiconductor-integrated liquid crystal filter

Yu-Hsin Yao, Chun-Ta Wang, Rui-Ren Chen, Hung-Chang Jau, Yi-Jen Chiu, and Tsung-Hsien Lin
Opt. Express 20(20) 22872-22877 (2012)

Improving CMOS-compatible Germanium photodetectors

Guoliang Li, Ying Luo, Xuezhe Zheng, Gianlorenzo Masini, Attila Mekis, Subal Sahni, Hiren Thacker, Jin Yao, Ivan Shubin, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 20(24) 26345-26350 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  2. L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
    [Crossref]
  3. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
    [Crossref]
  4. P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
    [Crossref]
  5. G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
    [Crossref]
  6. D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
    [Crossref]
  7. H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
    [Crossref]
  8. J. Cesar, S. Paul, M. T. Haidar, B. Corbett, A. Chipouline, and F. Küppers, “Surface micromachined MEMS-tunable PIN-photodiodes around 1550-nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper STu1N.7.
    [Crossref]
  9. T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
    [Crossref]
  10. Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
    [Crossref]
  11. W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
    [Crossref]
  12. J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26(3), 338–342 (2008).
    [Crossref]
  13. X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18(6), 5879–5889 (2010).
    [Crossref] [PubMed]
  14. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
    [Crossref]
  15. W. Vogel and M. Berroth, “Tunable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293 (2003).
    [Crossref]
  16. K. Sato, K. Mizutani, S. Sudo, K. Tsuruoka, K. Naniwae, and K. Kudo, “Wideband external cavity wavelength-tunable laser utilizing a liquid-crystal-based mirror and an intracavity etalon,” J. Lightwave Technol. 25(8), 2226–2232 (2007).
    [Crossref]
  17. O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
    [Crossref]
  18. Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
    [Crossref]
  19. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
    [Crossref] [PubMed]
  20. J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
    [Crossref]
  21. F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
    [Crossref]
  22. B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
    [Crossref]
  23. Engineered Materials Systems, http://emsadhesives.com/
  24. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
    [Crossref]

2018 (1)

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

2017 (2)

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

2016 (1)

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

2012 (1)

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

2011 (2)

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

2005 (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

2004 (1)

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

2003 (2)

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

W. Vogel and M. Berroth, “Tunable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293 (2003).
[Crossref]

1998 (1)

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

1997 (2)

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

1996 (1)

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

1993 (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

1985 (1)

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Alouini, M.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Baets, R.

Bardinal, V.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Beeckman, J.

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
[Crossref] [PubMed]

Berroth, M.

W. Vogel and M. Berroth, “Tunable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293 (2003).
[Crossref]

Bhat, R.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Boisnard, B.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Bouchoule, S.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Burrus, C. A.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Cai, S.

Camps, T.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Castany, O.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Chang-Hasnain, C. J.

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

Chemla, D. S.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Chevalier, N.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Christenson, G. L.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Claes, T.

Cook, K.

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Cui, H.

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

Damen, T. C.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Daran, E.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

De Cort, W.

De Sagazan, O.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Dell, J. M.

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

Dhanavantri, C.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Doucet, J.-B.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Duan, X.

Dupont, L.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Faraone, L.

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

Folliot, H.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Garrigues, M.

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Gauthier, J. P.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Gnauck, A. H.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Halbritter, H.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Hong, M.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Huang, H.

Huang, Y.

Ji, A.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Kudo, K.

Kurokawa, T.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Lafosse, X.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Le Corre, A.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Leclercq, J. L.

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Lee, H.

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

Lei, Y.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Levallois, C.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Li, G. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

Li, K.

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Li, Y.

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26(3), 338–342 (2008).
[Crossref]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

Lin, J.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Lo, Y. H.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Lv, J.

Mannaerts, J. P.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Meissner, P.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Miao, A.

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26(3), 338–342 (2008).
[Crossref]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

Miller, D. A. B.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Milne, J. S.

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

Mizutani, K.

Naniwae, K.

Neyts, K.

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
[Crossref] [PubMed]

Olsen, G. H.

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

Panajotov, K.

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

Paranthoen, C.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Peng, J.

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Pes, S.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Qiao, P.

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Ren, X.

Riemenschneider, F.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Sadani, B.

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

Sagnes, I.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Sang, H.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Sarathy, J.

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

Sato, K.

Schuler, L. P.

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

Shi, Y.

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

Shuaib, A.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Singh, B. R.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Song, H.

Strassner, M.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Sudo, S.

Syguda, S.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Taleb, F.

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

Tarraf, A.

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Tong, Q.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Tran, A. T. T. D.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Tsuda, H.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Tsuruoka, K.

Vail, E. C.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

Viktorovitch, P.

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Vogel, W.

W. Vogel and M. Berroth, “Tunable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293 (2003).
[Crossref]

Wang, Q.

Wang, W.

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

Wang, X.

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

Wiesenfeld, J. M.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Woestenborghs, W.

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

Wood, T. H.

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

Wu, M. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

Wu, S.-T.

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

Xie, C.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Xie, S.

Xie, Y.

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

Xin, Z.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Yuen, W.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

Zhang, X.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Zhao, J. H.

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

Zhou, D.

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Zhu, Z. H.

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

Appl. Phys. Lett. (2)

T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett. 47(3), 190–192 (1985).
[Crossref]

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Appl. Phys. Lett. 98(16), 161105 (2011).
[Crossref]

Electron. Lett. (2)

H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective PIN photodiode,” Electron. Lett. 40(6), 388–390 (2004).
[Crossref]

Y. Shi, J. H. Zhao, J. Sarathy, G. H. Olsen, and H. Lee, “Tunable resonant cavity enhanced photodetectors with GaInAsSb/AlGaAsSb multiple quantum well structure grown by molecular beam epitaxy,” Electron. Lett. 33(17), 1498–1499 (1997).
[Crossref]

IEEE Electron Device Lett. (1)

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27(10), 827–829 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Qiao, K. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (6)

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photonics Technol. Lett. 9(6), 725–727 (1997).
[Crossref]

D. Zhou, M. Garrigues, J. L. Leclercq, J. Peng, and P. Viktorovitch, “A phase-matching and pseudoresonance-enhanced design for tunable micromachined photodetectors,” IEEE Photonics Technol. Lett. 15(10), 1443–1445 (2003).
[Crossref]

Y. Xie, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photonics Technol. Lett. 24(17), 1509–1512 (2012).
[Crossref]

F. Taleb, S. Pes, C. Paranthoen, C. Levallois, N. Chevalier, O. De Sagazan, A. Le Corre, H. Folliot, and M. Alouini, “Enhancement of VCSEL performances using localized copper bonding through Silicon vias,” IEEE Photonics Technol. Lett. 29(13), 1105–1108 (2017).
[Crossref]

B. Sadani, B. Boisnard, X. Lafosse, T. Camps, J.-B. Doucet, E. Daran, C. Paranthoen, C. Levallois, L. Dupont, S. Bouchoule, and V. Bardinal, “Liquid-crystal alignment by a nanoimprinted grating for wafer-scale fabrication of tunable devices,” IEEE Photonics Technol. Lett. 30(15), 1388–1391 (2018).
[Crossref]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photonics Technol. Lett. 8(1), 98–100 (1996).
[Crossref]

IEEE Sens. J. (1)

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

J. Appl. Phys. (1)

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

J. Lightwave Technol. (3)

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, “MEMS-based microspectrometer technologies for NIR and MIR wavelengths,” J. Phys. D Appl. Phys. 42(13), 133001 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

W. Vogel and M. Berroth, “Tunable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293 (2003).
[Crossref]

Other (2)

J. Cesar, S. Paul, M. T. Haidar, B. Corbett, A. Chipouline, and F. Küppers, “Surface micromachined MEMS-tunable PIN-photodiodes around 1550-nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper STu1N.7.
[Crossref]

Engineered Materials Systems, http://emsadhesives.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Images of the tunable PD sample at different steps of the fabrication process (a) after PD fabrication, (b) after deposition of the aSi/SiNx bottom DBR, (c) at the end of the process. (d) 3D and cross-section view for a single tunable PD. (e) Schematic view of the LC molecules reorientation with AC voltage applied to LC microcells.
Fig. 2
Fig. 2 (a) Evolution of reflectivity spectra (plotted as 1-R for improved clarity) measured by localized FTIR spectroscopy on a PD area for different AC voltages (2 kHz) varying from 0 to 10V in amplitude. The orientation of the polarizer was chosen to attenuate the “ordinary” modes. (b) Resonant wavelength shift of extraordinary modes and deduced refractive index variation as a function of the applied tuning voltage on the LC filter.
Fig. 3
Fig. 3 (a) I-V curves in the dark and under 1.4 mW illumination at 1527 nm for a 380 × 380 µm2 PD without any LC voltage. (b) Photocurrent for the same PD related to resonant extraordinary modes vs AC voltage (2 kHz) applied on the LC microcell for different lasing wavelengths fixed at an input power of 1.4 mW.
Fig. 4
Fig. 4 (a) Photocurrent spectra of the resonant extraordinary modes measured for different AC voltage applied on the LC microcell as a function of the incident laser wavelength. (b) Photocurrent color mapping for ordinary (m0) and extraordinary modes (me1 and me2) as a function of the lasing wavelength of the tunable laser and AC voltage applied on LC microcells.
Fig. 5
Fig. 5 (a) Scheme of the experimental set-up to test the tunable PD as a micro-spectrometer. (b) Spontaneous emission spectra emitted from an Er-doped fiber excited at two different power levels. The spectra were recorded by the tunable PD and compared with measurements acquired by an optical spectrum analyzer (OSA).

Metrics