Abstract

We discuss coupling of site-selectively induced quantum emitters in exfoliated monolayers of WSe2 to plasmonic nanostructures. Gold nanorods of 20 nm-240 nm size, which are arranged in pitches of a few micrometers on a dielectric surface, act as seeds for the formation of quantum emitters in the atomically thin materials. We observe characteristic narrow-band emission signals from the monolayers, which correspond well with the positions of the metallic nanopillars with and without thin dielectric coating. Single photon emission from the emitters is confirmed by autocorrelation measurements, yielding g2(τ = 0) values as low as 0.17. Moreover, we observe a strong co-polarization of our single photon emitters with the frequency matched plasmonic resonances, as a consequence of light-matter coupling. Our work represents a significant step towards the scalable implementation of coupled quantum emitter-resonator systems for highly integrated quantum photonic and plasmonic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2

Yu-Ming He, Sven Höfling, and Christian Schneider
Opt. Express 24(8) 8066-8073 (2016)

Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride

Nicholas V. Proscia, Zav Shotan, Harishankar Jayakumar, Prithvi Reddy, Charles Cohen, Michael Dollar, Audrius Alkauskas, Marcus Doherty, Carlos A. Meriles, and Vinod M. Menon
Optica 5(9) 1128-1134 (2018)

Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2

Hongju Li, Meng Qin, Yongze Ren, and Jigang Hu
Opt. Express 27(16) 22951-22959 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
    [Crossref]
  2. A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
    [Crossref]
  3. S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).
  4. P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
    [Crossref] [PubMed]
  5. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
    [Crossref]
  6. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [Crossref] [PubMed]
  7. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
    [Crossref] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  9. H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
    [Crossref]
  10. K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
    [Crossref]
  11. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [Crossref] [PubMed]
  12. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
    [Crossref] [PubMed]
  13. M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
    [Crossref]
  14. S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
    [Crossref]
  15. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  16. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).
  17. S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
    [Crossref] [PubMed]
  18. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref] [PubMed]
  19. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref] [PubMed]
  20. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
    [Crossref]
  21. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref] [PubMed]
  22. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
    [Crossref] [PubMed]
  23. Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
    [Crossref] [PubMed]
  24. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
    [Crossref] [PubMed]
  25. T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
    [Crossref]
  26. O. G. Schmidt, Lateral alignment of epitaxial quantum dots (Springer Science & Business Media, 2007).
  27. P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).
  28. C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
    [Crossref]
  29. T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
    [Crossref]
  30. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
    [Crossref] [PubMed]
  31. L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
    [Crossref]
  32. C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
    [Crossref]
  33. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
    [Crossref]
  34. A. Krasnok, S. Lepeshov, and A. Alú, “Nanophotonics with 2D Transition Metal Dichalcogenides,” ArXiv 1801.00698 (2018).
  35. P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
    [Crossref]
  36. T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
    [Crossref] [PubMed]
  37. J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
    [Crossref] [PubMed]
  38. B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
    [Crossref]
  39. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
    [Crossref]
  40. J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
    [Crossref]
  41. Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
    [Crossref]
  42. J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
    [Crossref]
  43. Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).
  44. T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

2018 (5)

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

2017 (8)

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

2016 (3)

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

2015 (7)

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref] [PubMed]

2014 (2)

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

2013 (2)

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

2012 (2)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

2009 (2)

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

2008 (4)

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2006 (1)

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

2000 (3)

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

1996 (2)

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Aghaeimeibodi, S.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Aharonovich, I.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

Ahmadi, E. D.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Al-Hmoud, M.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Alivisatos, A. P.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Alú, A.

A. Krasnok, S. Lepeshov, and A. Alú, “Nanophotonics with 2D Transition Metal Dichalcogenides,” ArXiv 1801.00698 (2018).

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ardelean, J. V.

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Atatüre, M.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Atlasov, K.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Balan, A.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Balasubramanian, G.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Balogh, I.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

Barbone, M.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Beke, D.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

Ben Aziza, Z.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Betzold, S.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Biasiol, G.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Bimberg, D.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Blackburn, J. L.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Braive, R.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Branny, A.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Bratschitsch, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Buratto, S. K.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Buscema, M.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Cai, T.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Carson, P. J.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Castellanos-Gomez, A.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Castelletto, S.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Chan, I. Y.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Chaste, J.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Chen, C.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Chen, M. C.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Chen, M.-C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

De Lange, G.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

de Vasconcellos, S. Michaelis

Dhar, S.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Ding, X.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Dmochowski, G. M.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

Dobrowolska, M.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Duan, Z. C.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Dutta, S.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Dwir, B.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Emmerling, M.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Ewering, J.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Felici, M.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Ferlazzo, L.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Ferrari, A. C.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Furdyna, J. K.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Gali, A.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Gallo, P.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

George, A.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Gerardot, B. D.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref] [PubMed]

Gerhardt, S.

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Gregersen, N.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Greve, K. D.

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

Grundmann, M.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Hanke, T.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Hanson, R.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

He, Y.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

He, Y. M.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

He, Y.-M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Heeres, E. C.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

Heindel, T.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

Hemmer, P. R.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Henck, H.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Henneberger, F.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Höfling, S.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Hohenester, U.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Hone, J.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Hone, J. C.

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

Huang, H. L.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Huang, H.-L.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Huang, S.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Hugall, J. T.

J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
[Crossref]

Huggenberger, A.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Hugonin, J.-P.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Iff, O.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Ivády, V.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Janssen, L.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Jelezko, F.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Johnson, A. T.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Johnson, B. C.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Joseph, A. M.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Kaczmarczyk, A.

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref] [PubMed]

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Kamp, M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Kapon, E.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Kara, D. M.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Karlsson, K. F.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Kaushik, N.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Kern, J.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

Kim, C.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Kim, J.-h.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Kistner, C.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

Kolesov, R.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Krasnok, A.

A. Krasnok, S. Lepeshov, and A. Alú, “Nanophotonics with 2D Transition Metal Dichalcogenides,” ArXiv 1801.00698 (2018).

Krueger, A.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Kuhn, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

Kumar, G. V. P.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Kumar, S.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Kwon, S.-H.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Lalanne, P.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Latawiec, P.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Lee, Y. J.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Leitenstorfer, A.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Lepeshov, S.

A. Krasnok, S. Lepeshov, and A. Alú, “Nanophotonics with 2D Transition Metal Dichalcogenides,” ArXiv 1801.00698 (2018).

Li, B.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Li, J.-P.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Li, Y.-H.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Liu, C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Lodha, S.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Loncar, M.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Lou, J.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Lowisch, M.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Lu, C. Y.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Lu, C.-Y.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ma, Y.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Maier, S.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Manna, L.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Mason, M. D.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

McMahon, P. L.

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Merz, J. L.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Michaelis de Vasconcellos, S.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Michler, P.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Miguel-Sanchez, J.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

Missaoui, A.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Mistry, K. S.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Mohan, A.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Mohapatra, P. K.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Molenaar, R.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Montblanch, A. R.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Moon, K.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Mukherjee, B.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Munnelly, P.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

Najmaei, S.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Naylor, C.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Niehues, I.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Odom, T. W.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Ohshima, T.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Oosterkamp, T. H.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

Ott, A. K.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Ouerghi, A.

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

Palacios-Berraquero, C.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Pan, J. W.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Pan, J.-W.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Peng, C.-Z.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Peng, X.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Press, D.

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

Proux, R.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Qin, J.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Rabe, M.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Reiter, D. E.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

Reitzenstein, S.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

Robledo, L.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

Rudra, A.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Sauvan, C.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Schlehahn, A.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

Schmidt, O. G.

O. G. Schmidt, Lateral alignment of epitaxial quantum dots (Springer Science & Business Media, 2007).

Schmidt, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

Schneider, C.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Schneider, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Senellart, P.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shayan, K.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Shepard, G. D.

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Shin, C.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Simsek, E.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Singh, A.

J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
[Crossref]

Singh, B. P.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Singh, V.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Solomon, G.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Sorba, L.

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Stavrias, N.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Steele, G. a.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Stegemann, B.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Stiehm, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

Strauf, S.

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Strauss, M.

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Strouse, G. F.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Su, Z. E.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Su, Z.-E.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Sünner, T.

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Thoma, A.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

Tisler, J.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

Tonndorf, P.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

Toth, M.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Tran, T. T.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Tripathi, L. N.

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

Tripathi, R. P. N.

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Trügler, A.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Türck, V.

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Umeda, T.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

Unsleber, S.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Van Der Sar, T.

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

van der Zant, H. S. J.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. a. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Van Hulst, N. F.

J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
[Crossref]

Veuillen, J.-Y.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Vynck, K.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Waks, E.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Wang, C.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Wang, D.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Wang, H.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Wang, P. D.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Wang, X. L.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Weinmann, P.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

White, A.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Wiener, D.

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Wigger, D.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

Wojcik, A.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Wrachtrup, J.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Xin, S. H.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Xu, Z. Q.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Yamamoto, Y.

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Yan, W.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Yang, A.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

Yang, W.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

Yang, Z.

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Yin, A.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

Yoon, D.

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Zachreson, C.

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zhang, C.

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Zhang, J.

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2D Mater. (1)

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. a. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

ACS Nano (2)

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A. T. Johnson, R. Braive, and A. Ouerghi, “Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics,” ACS Nano 12, 3235–3242 (2018).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, “Room temperature quantum emission from cubic silicon carbide nanoparticles,” ACS Nano 8, 7938–7947 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

L. N. Tripathi, O. Iff, S. Betzold, M. Emmerling, K. Moon, Y. J. Lee, S.-H. Kwon, S. Höfling, and C. Schneider, “Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces,” ACS Photonics 5, 1919–1926 (2018).
[Crossref]

J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic Cavity Coupling,” ACS Photonics 5, 43–53 (2018).
[Crossref]

J. Kern, A. Trügler, I. Niehues, J. Ewering, R. Schmidt, R. Schneider, S. Najmaei, A. George, J. Zhang, J. Lou, U. Hohenester, S. Michaelis De Vasconcellos, and R. Bratschitsch, “Nanoantenna-Enhanced Light-Matter Interaction in Atomically Thin WS2,” ACS Photonics 2, 1260–1265 (2015).
[Crossref]

Adv. Mater. (1)

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2,” Adv. Mater. 287101–7105 (2016).
[Crossref] [PubMed]

APL Photonics (1)

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photonics 1, 011301 (2016).
[Crossref]

Appl. Phys. Lett. (4)

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy,” Appl. Phys. Lett. 69, 3884–3886 (1996).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 263101, 1–4 (2008).

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 1–4 (2009).
[Crossref]

T. Van Der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 92–95 (2009).
[Crossref]

arXiv Mesoscale Nanoscale Phys. (1)

Y. Luo, G. D. Shepard, J. V. Ardelean, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer semiconductors to plasmonic nanocavities,” arXiv Mesoscale Nanoscale Phys. 1050, 06541 (2018).

Laser & Photonics Rev. (1)

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light Interaction with Photonic and Plasmonic Resonances,” Laser & Photonics Rev. 1700113, 1700113 (2018).
[Crossref]

Nano Lett. (2)

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref] [PubMed]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

C. Palacios-Berraquero, D. M. Kara, A. R. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 1–6 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, “Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities,” Nat. Commun. 81413 (2017).
[Crossref]

Nat. Mater. (2)

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “HL 113 : Quantum information systems II (with TT),” Nat. Mater. 12, 1–6 (2013).

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361 (2017).
[Crossref]

Nature (5)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoğlu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[Crossref] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref] [PubMed]

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Opt. Express (1)

S. Unsleber, Y.-M. He, S. Maier, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74 % extraction efficiency,” Opt. Express 24, 1023–1030 (2015).

Opt. letters (1)

T. Sünner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. letters 33, 1759–1761 (2008).
[Crossref]

Optica (1)

Phys. Rev. Lett. (4)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 3–6 (2006).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116, 1–6 (2016).
[Crossref]

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, and X. L. Wang, “Time-bin-encoded boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[Crossref] [PubMed]

Phys. review. B, Condens. matter (1)

M. Lowisch, M. Rabe, B. Stegemann, F. Henneberger, M. Grundmann, V. Türck, and D. Bimberg, “Zero-dimensional excitons in (Zn, Cd)Se quantum structures,” Phys. review. B, Condens. matter 54, R11074 (1996).
[Crossref]

Reports on Prog. Phys. (1)

K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Reports on Prog. Phys. 76092501 (2013).
[Crossref]

Sci. Reports (1)

B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, and S. Lodha, “Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling,” Sci. Reports 7, 41175 (2017).
[Crossref]

Other (3)

T. Cai, J.-h. Kim, Z. Yang, S. Dutta, S. Aghaeimeibodi, and E. Waks, “Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nano-pillars,” arXiv p. 1803.09358 (2018).

O. G. Schmidt, Lateral alignment of epitaxial quantum dots (Springer Science & Business Media, 2007).

A. Krasnok, S. Lepeshov, and A. Alú, “Nanophotonics with 2D Transition Metal Dichalcogenides,” ArXiv 1801.00698 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Scanning electron microscope (SEM) image of the sample surface comprising metallic nanopillars as quantum emitter seeds and plasmonic nano-cavities. Inset: close-up view of a nanopillar. b) Optical image of the pillar array after successful dry-transfer of an atomically thin WSe2 monolayer. c) Close-up SEM image of a single pillar covered by a strained monolayer, showing the formation of wrinkles. d) Comparison of the photoluminescence of pillars covered by WSe2 with and without Al2O3 coating at 100 µW. No significant influence or quenching is observed.
Fig. 2
Fig. 2 a) Power-dependent spectra on a nanopillar revealing many discrete emitters. b) Power-dependent study of a quantum emitter emission line before saturation starts above 10 µW. c) Spatial map of a WSe2 flake covering the nano-pillar array, showing the integrated intensity from 700 – 800 nm. The enhanced PL coincides with the 4 µm pillar distance (black pattern). d) Spectral information extracted between the blue arrows in c), revealing a periodic increase in luminescence and the formation of additional localized emission centers at the pillar positions.
Fig. 3
Fig. 3 a) Second-order autocorrelation function of a quantum emitter on a pillar. The value of g(2)(τ = 0) = 0.17 ± 0.15 confirms single photon emission. Inset: spectrum of single photon emitter. b) SEM images of two individual rectangles covered by WSe2. Pillar A is horizontally and pillar B vertically aligned. c) and d) Polarization characteristic of three individual quantum emitters each on two different 90 nm × 30 nm nanopillars shown in b).
Fig. 4
Fig. 4 FDTD simulation: Vector maps of the field distribution and electric field enhancement E/E0 at top surface of a pillar with a) a square cross-section of (140 nm × 140 nm) and c) a rod-like cross-section of (90 nm × 30 nm) excited by an electromagnetic field E0 of 1 V/m at 740 nm. b) Calculated scattering cross-section spectrum of square nanopillars with different size from 140 nm to 40 nm. d) Two scattering cross-section spectrums of a rod-like nanopillar with a size of 90 nm × 30 nm for an incident light with orthogonal polarizations, Ex (red) and Ey (black). X-direction represents the direction of the long edge of the rod-like nanopillar.

Metrics