Abstract

Terahertz (THz) imaging has been demonstrated in numerous applications from medical to non-destructive evaluation (NDE), but current systems require expensive components, provide slow frame-rates and low resolutions. THz holography offers a potentially low-cost, high-performance alternative. Here we demonstrate the first full video-rate THz digital holography system at 2.52 THz (118.8 µm) using low-cost optical components. 2D digital reconstructions of samples are performed at frame-rates of 50 Hz - an order of magnitude higher than previous systems, whilst imaging of samples concealed in common packaging types demonstrates suitability for NDE applications. A lateral resolution of 250 µm was determined using a 1951 USAF target.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Video-rate terahertz interferometric and synthetic aperture imaging

Zhiwei Liu, Ke Su, Dale E. Gary, John F. Federici, Robert B. Barat, and Zoi-Heleni Michalopoulou
Appl. Opt. 48(19) 3788-3795 (2009)

Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths

Miguel A. Preciado, Guillem Carles, and Andrew R. Harvey
OSA Continuum 1(1) 170-180 (2018)

Visualization of internal structure and internal stress in visibly opaque objects using full-field phase-shifting terahertz digital holography

Masatomo Yamagiwa, Takeo Minamikawa, Fui Minamiji, Takahiko Mizuno, Yu Tokizane, Ryo Oe, Hidenori Koresawa, Yasuhiro Mizutani, Tetsuo Iwata, Hirotsugu Yamamoto, and Takeshi Yasui
Opt. Express 27(23) 33854-33868 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
    [Crossref]
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  3. L. Rong, T. Latychevskaia, X. Zhou, H. Huang, D. Wang, and Y. Wang, “Dynamic dehydration observation based on terahertz in-line digital holography,” Digital Holography & 3-D Imaging Meeting. (2015).
    [Crossref]
  4. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
    [Crossref] [PubMed]
  5. C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
    [Crossref]
  6. L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
    [Crossref]
  7. I. E. Carranza, J. Grant, J. Gough and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” in IEEE Transactions on Terahertz Science and Technology (IEEE, 2015), vol. 5, no. (6), pp. 892–901.
  8. I. E. Carranza, J. Grant, J. Gough and D.R.S. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays,”. IEEE Journal of Selected Topics in Quantum Electronics (IEEE, 2017), 23(4), pp.1–8.
  9. F. Simoens, L. Dussopt, J. Meilhan, J. Nicolas, N. Monnier, A. Siligaris, and O. Redon, “Towards industrial applications of terahertz real-time imaging,” Proc. SPIE 10531 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI (2018).
  10. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
    [Crossref] [PubMed]
  11. Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
    [Crossref]
  12. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
    [Crossref] [PubMed]
  13. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [Crossref] [PubMed]
  14. R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
    [Crossref]
  15. TerahertzStore, https://www.terahertzstore.com/products/terahertz-cameras/terahertz-camera-for-thz-imaging-cea-leti-tzcam.htm , (2018).
  16. V. R Singh and A. Asundi, Digital Holography for MEMS and Microsystem Metrology, chap. 2 (Wiley 2011).
  17. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, and W. S. Grundfest, “THz Medical Imaging: in vivo Hydration Sensing,” IEEE Transactions on THz Science and Technology (IEEE, 2011), 1(1) 12216096.
  18. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  19. G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
    [Crossref]
  20. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  21. L. Valzania, P. Zolliker, and E. Hack, “Topography of hidden objects using THz digital holography with multi-beam interferences,” Opt. Express 25(10), 11038–11047 (2017).
    [Crossref] [PubMed]
  22. M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006).
    [Crossref]
  23. P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39(8), 2262–2265 (2014).
    [Crossref] [PubMed]
  24. J. W. Goodman, “Introduction to Fourier optics, II ed.”, McGraw-Hill series in electrical and computer engineering (McGraw-Hill), pp. xviii, 441 p (1996).
  25. T. C. Poon and J. P. Liu, “Introduction to modern digital holography: With MATLAB,” (Cambridge University 2014).
  26. G. D. Boreman and S. Yang, “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt. 34(34), 8050–8052 (1995).
    [Crossref] [PubMed]
  27. http://dx.doi.org/10.5525/gla.researchdata.627.
    [Crossref] [PubMed]

2017 (2)

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

L. Valzania, P. Zolliker, and E. Hack, “Topography of hidden objects using THz digital holography with multi-beam interferences,” Opt. Express 25(10), 11038–11047 (2017).
[Crossref] [PubMed]

2016 (1)

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

2015 (2)

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

2014 (2)

2013 (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

2011 (1)

2008 (1)

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

2006 (1)

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006).
[Crossref]

2005 (3)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

1999 (1)

1995 (1)

Baker, C.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bartalini, S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Beere, H. E.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Boreman, G. D.

Chang, C. C.

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Chen, G.

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Chen, X.

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Cicchi, R.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Cole, B. E.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Consolino, L.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Cuche, E.

De Natale, P.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Degl’Innocenti, R.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Deng, Q.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Depeursinge, C.

Everitt, H. O.

Fan, W.

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Girshovitz, P.

Gordon, K. C.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Gregory, D. A.

Hack, E.

Heimbeck, M. S.

Hogbin, M. R.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, H.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Jessop, D. S.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Kemp, M. C.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Kim, M.

Kim, M. K.

Klimont, A.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Kuo, M.

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Kuo, M. K.

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Laman, N.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

Li, W.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Li, Z.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Lin, C.

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Liu, L.

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Lo, C. M.

Lo, T.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Locatelli, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Mann, C.

Mann, C. J.

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006).
[Crossref]

Marquet, P.

Newnham, D. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Pavone, F.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Pepper, M.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Rades, T.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Ravaro, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Redo-Sanchez, A.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

Ren, Y.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Ritchie, D. A.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Schulkin, B.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shah, Y. D.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Shaked, N. T.

Shen, C.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Strachan, C. J.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Taday, P. F.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Tongue, T.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

Tribe, W. R.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

Valzania, L.

Vitiello, M. S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Wallis, R.

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

Wang, X.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Xie, J.

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Yang, S.

Yu, L.

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006).
[Crossref]

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

Zeitler, J. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zolliker, P.

Zou, R.

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

G. Chen, C. Lin, M. Kuo, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008).
[Crossref]

Appl. Phys. Lett. (1)

R. Degl’Innocenti, Y. D. Shah, R. Wallis, A. Klimont, Y. Ren, D. S. Jessop, H. E. Beere, and D. A. Ritchie, “A hybrid plasmonic waveguide terahertz quantum cascade laser,” Appl. Phys. Lett. 106(8), 082101 (2015).
[Crossref]

J. Infrared, Millim. Te (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millim. Te 34(9), 500–518 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006).
[Crossref]

J. Pharm. Sci. (1)

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

L. Liu, W. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Opt. Eng. (1)

Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, and R. Zou, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 113102 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (11)

L. Rong, T. Latychevskaia, X. Zhou, H. Huang, D. Wang, and Y. Wang, “Dynamic dehydration observation based on terahertz in-line digital holography,” Digital Holography & 3-D Imaging Meeting. (2015).
[Crossref]

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proceedings of the IEEE (IEEE, 2007), 95(8), 1559–1565.
[Crossref]

I. E. Carranza, J. Grant, J. Gough and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” in IEEE Transactions on Terahertz Science and Technology (IEEE, 2015), vol. 5, no. (6), pp. 892–901.

I. E. Carranza, J. Grant, J. Gough and D.R.S. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays,”. IEEE Journal of Selected Topics in Quantum Electronics (IEEE, 2017), 23(4), pp.1–8.

F. Simoens, L. Dussopt, J. Meilhan, J. Nicolas, N. Monnier, A. Siligaris, and O. Redon, “Towards industrial applications of terahertz real-time imaging,” Proc. SPIE 10531 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI (2018).

TerahertzStore, https://www.terahertzstore.com/products/terahertz-cameras/terahertz-camera-for-thz-imaging-cea-leti-tzcam.htm , (2018).

V. R Singh and A. Asundi, Digital Holography for MEMS and Microsystem Metrology, chap. 2 (Wiley 2011).

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, and W. S. Grundfest, “THz Medical Imaging: in vivo Hydration Sensing,” IEEE Transactions on THz Science and Technology (IEEE, 2011), 1(1) 12216096.

J. W. Goodman, “Introduction to Fourier optics, II ed.”, McGraw-Hill series in electrical and computer engineering (McGraw-Hill), pp. xviii, 441 p (1996).

T. C. Poon and J. P. Liu, “Introduction to modern digital holography: With MATLAB,” (Cambridge University 2014).

http://dx.doi.org/10.5525/gla.researchdata.627.
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Real time reconstruction at video rate (50Hz) of metallic 'UoG' object with Thz radiation at 2.52THz (118.8um)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental set-up of the off-axis reflection holography system and (b) CAD drawing of the aluminium sample object.
Fig. 2
Fig. 2 Hologram multiplexing algorithm for real time reconstruction.
Fig. 3
Fig. 3 Simulated interferogram (left), frequency spectrum (mid) and amplitude reconstruction of sample (right).
Fig. 4
Fig. 4 Experimental interferogram (left), frequency spectrum (mid) and amplitude reconstruction of sample (right).
Fig. 5
Fig. 5 Reconstruction of the UoG object concealed in a paper envelope (top) and polythene package (bottom).
Fig. 6
Fig. 6 (a) Optical image of 1951 USAF target sample, (b) amplitude reconstruction hologram and (c) zoom of the highlighted region. Feature sizes of 2λ were resolved (d) Intensity plot of cross section of highlighted region.
Fig. 7
Fig. 7 Plot of MTF for USAF target.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A( α λ , β λ ,z )=A( α λ , β λ ,0 )exp( j 2π λ , 1 α 2 β 2 z )
R(θ)=exp( j 2π λ ysin(θ) )
O(x,y,z)=inverseFFT[ backpropagation( FilteredFFT( H(x,y,0) ) ) ]
Y( f x , f y )= [ C ]| z=0 e j2π( f x x+ f y y) H(x,y,0)dxdy
f zo = 1 (λ f x ) 2 (λ f y ) 2
BP= e j 2π λ { f z0 }.z
O(x,y,z)= 1 2π e j2π( f x + f y ) BP Y( f x , f y )d f x d f y
OTF | F[ rect x w ] | 2 sin c 2 (p f x )
θ max = sin 1 ( f cutoff λ )

Metrics