Abstract

We demonstrate a dual-beam infrared optical parametric source featuring a noncollinear KTA booster amplifier and straightforward angular dispersion compensation of the idler beam. Through careful beam and pulse characterization, and high-harmonic generation in a crystalline solid, we show that the corrected idler beam is diffraction-limited, astigmatism-free, and compressible to its transform-limited, 5-cycle pulse duration. Pumped by only 40-µJ pulses at 1.03 µm, the parametric source delivers 7.8-µJ, 38-fs, 1.53-µm and 2.3-µJ, 53-fs, CEP-stable, 3.1-µm pulses at a repetition rate of 100 kHz. The scheme provides a promising route to scale the pulse energy and average power beyond PPLN- or KTA-based collinear OPA architectures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses

Qingbin Zhang, Eiji J. Takahashi, Oliver D. Mücke, Peixiang Lu, and Katsumi Midorikawa
Opt. Express 19(8) 7190-7212 (2011)

High-average-power, 50-fs parametric amplifier front-end at 1.55 μm

Mark Mero, Frank Noack, Florian Bach, Valentin Petrov, and Marc J. J. Vrakking
Opt. Express 23(26) 33157-33163 (2015)

Supercontinuum-seeded few-cycle mid-infrared OPCPA system

Philippe Rigaud, Aymeric Van de Walle, Marc Hanna, Nicolas Forget, Florent Guichard, Yoann Zaouter, Khmaies Guesmi, Frédéric Druon, and Patrick Georges
Opt. Express 24(23) 26494-26502 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Kraack and P. Hamm, “Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy,” Chem. Rev. 117(16), 10623–10664 (2017).
    [Crossref] [PubMed]
  2. B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
    [Crossref]
  3. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
    [Crossref] [PubMed]
  4. O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).
    [Crossref] [PubMed]
  5. M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
    [Crossref] [PubMed]
  6. M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
    [Crossref] [PubMed]
  7. M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
    [Crossref] [PubMed]
  8. P. Rigaud, A. Van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, “Supercontinuum-seeded few-cycle mid-infrared OPCPA system,” Opt. Express 24(23), 26494–26502 (2016).
    [Crossref] [PubMed]
  9. N. Thiré, R. Maksimenka, B. Kiss, C. Ferchaud, P. Bizouard, E. Cormier, K. Osvay, and N. Forget, “4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise,” Opt. Express 25(2), 1505–1514 (2017).
    [Crossref] [PubMed]
  10. M. Mero and V. Petrov, “High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier,” IEEE Photonics J. 9(3), 3200408 (2017).
    [Crossref]
  11. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
    [Crossref]
  12. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
    [Crossref] [PubMed]
  13. T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
    [Crossref]
  14. S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
    [Crossref] [PubMed]
  15. G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
    [Crossref]
  16. A. Boulesbaa, O. Isaienko, A. Tuladhar, and E. Borguet, “Generation of sub-30-fs microjoule mid-infrared pulses for ultrafast vibrational dynamics at solid/liquid interfaces,” Opt. Lett. 38(23), 5008–5011 (2013).
    [Crossref] [PubMed]
  17. N. Umemura, K. Yoshida, and K. Kato, “Phase-matching properties of KNbO3 in the mid-infrared,” Appl. Opt. 38(6), 991–994 (1999).
    [Crossref] [PubMed]
  18. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
    [Crossref] [PubMed]
  19. J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 microm signal and a 1.064 um pump,” Opt. Lett. 30(15), 1974–1976 (2005).
    [Crossref] [PubMed]
  20. D. Kraemer, M. L. Cowan, R. Hua, K. Franjic, and R. J. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813–818 (2007).
    [Crossref]
  21. G. M. Archipovaite, S. Petit, J.-C. Delagnes, and E. Cormier, “100 kHz Yb-fiber laser pumped 3 μm optical parametric amplifier for probing solid-state systems in the strong field regime,” Opt. Lett. 42(5), 891–894 (2017).
    [Crossref] [PubMed]
  22. Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
    [Crossref]
  23. F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
    [Crossref] [PubMed]
  24. A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
    [Crossref] [PubMed]
  25. L. Canova, X. Chen, A. Trisorio, A. Jullien, A. Assion, G. Tempea, N. Forget, T. Oksenhendler, and R. Lopez-Martens, “Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF,” Opt. Lett. 34(9), 1333–1335 (2009).
    [Crossref] [PubMed]
  26. C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
    [Crossref] [PubMed]
  27. J. Vogelsang, J. Robin, B. Piglosiewicz, C. Manzoni, P. Farinello, S. Melzer, P. Feru, G. Cerullo, C. Lienau, and P. Groß, “High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission,” Opt. Express 22(21), 25295–25306 (2014).
    [Crossref] [PubMed]
  28. S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
    [Crossref]

2018 (1)

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

2017 (7)

G. M. Archipovaite, S. Petit, J.-C. Delagnes, and E. Cormier, “100 kHz Yb-fiber laser pumped 3 μm optical parametric amplifier for probing solid-state systems in the strong field regime,” Opt. Lett. 42(5), 891–894 (2017).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
[Crossref]

J. P. Kraack and P. Hamm, “Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy,” Chem. Rev. 117(16), 10623–10664 (2017).
[Crossref] [PubMed]

N. Thiré, R. Maksimenka, B. Kiss, C. Ferchaud, P. Bizouard, E. Cormier, K. Osvay, and N. Forget, “4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise,” Opt. Express 25(2), 1505–1514 (2017).
[Crossref] [PubMed]

M. Mero and V. Petrov, “High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier,” IEEE Photonics J. 9(3), 3200408 (2017).
[Crossref]

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
[Crossref]

2016 (2)

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

P. Rigaud, A. Van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, “Supercontinuum-seeded few-cycle mid-infrared OPCPA system,” Opt. Express 24(23), 26494–26502 (2016).
[Crossref] [PubMed]

2015 (3)

M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
[Crossref] [PubMed]

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (3)

S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
[Crossref] [PubMed]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2007 (1)

2005 (1)

2002 (1)

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1998 (1)

Ahmad, I.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Ališauskas, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Andriukaitis, G.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Archipovaite, G. M.

Arpin, P.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Assion, A.

Bach, F.

Balciunas, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Baltuska, A.

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Baltuška, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Baudisch, M.

Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Beetar, J.

S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
[Crossref]

Biegert, J.

Bizouard, P.

Borguet, E.

Boulesbaa, A.

Bradler, M.

Brown, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Cameron, S. M.

Canova, L.

Cerullo, G.

Chen, M.-C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Chen, X.

Chini, M.

S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
[Crossref]

Cormier, E.

Cowan, M. L.

Delagnes, J.-C.

Druon, F.

Elu, U.

Ermolov, A.

Farinello, P.

Ferchaud, C.

Feru, P.

Forget, N.

Förster, M.

Franjic, K.

Frosz, M. H.

Fuji, T.

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Fülöp, J. A.

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Gaeta, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Georges, P.

Gholam-Mirzaei, S.

S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
[Crossref]

Groß, P.

Guesmi, K.

Guichard, F.

Hamm, P.

J. P. Kraack and P. Hamm, “Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy,” Chem. Rev. 117(16), 10623–10664 (2017).
[Crossref] [PubMed]

Hanna, M.

Hansson, G.

Hebling, J.

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Heiner, Z.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

Hemmer, M.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
[Crossref] [PubMed]

Hernández-García, C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Homann, C.

Hommelhoff, P.

Hua, R.

Huang, S.-W.

Isaienko, O.

Jaron-Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Jullien, A.

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Karlsson, H.

Karsch, S.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Kärtner, F. X.

Kato, K.

Kiss, B.

Kneipp, J.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Kobayashi, T.

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[Crossref] [PubMed]

Köttig, F.

Kraack, J. P.

J. P. Kraack and P. Hamm, “Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy,” Chem. Rev. 117(16), 10623–10664 (2017).
[Crossref] [PubMed]

Kraemer, D.

Krausz, F.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Laurell, F.

Law, R. J.

Lienau, C.

Lopez-Martens, R.

Luk, T. S.

Major, Z.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Maksimenka, R.

Manzoni, C.

Melzer, S.

Mero, M.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

M. Mero and V. Petrov, “High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier,” IEEE Photonics J. 9(3), 3200408 (2017).
[Crossref]

M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
[Crossref] [PubMed]

Miller, R. J. D.

Moses, J.

Moshammer, R.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Mücke, O. D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Murnane, M. M.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Noack, F.

Oksenhendler, T.

Osvay, K.

Palfalvi, L.

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Petit, S.

Petrov, V.

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

M. Mero and V. Petrov, “High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier,” IEEE Photonics J. 9(3), 3200408 (2017).
[Crossref]

M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
[Crossref] [PubMed]

Piglosiewicz, B.

Pires, H.

Plaja, L.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Popmintchev, D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Pugzlys, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Pullen, M. G.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Riedle, E.

Rigaud, P.

Robin, J.

Rudd, J. V.

Russell, P. St. J.

Sakane, I.

Schrauth, S. E.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Schröter, C. D.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Sclafani, M.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Senftleben, A.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Shim, B.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Shirakawa, A.

Tani, F.

Tempea, G.

Thiré, N.

Tokodi, L.

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Toth, G.

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Trisorio, A.

Trushin, S.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Tuladhar, A.

Ullrich, J.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Umemura, N.

Van de Walle, A.

Vogelsang, J.

Vöhringer, P.

Vrakking, M. J. J.

Wang, S.

Wang, T.-J.

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Wolter, B.

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Yesudas, F.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Yoshida, K.

Zaouter, Y.

APL Photonics (1)

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

T.-J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 121(3), 229–233 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Gholam-Mirzaei, J. Beetar, and M. Chini, “High harmonic generation in ZnO with a high-power mid-IR OPA,” Appl. Phys. Lett. 110(6), 061101 (2017).
[Crossref]

Chem. Rev. (1)

J. P. Kraack and P. Hamm, “Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy,” Chem. Rev. 117(16), 10623–10664 (2017).
[Crossref] [PubMed]

IEEE Photonics J. (1)

M. Mero and V. Petrov, “High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier,” IEEE Photonics J. 9(3), 3200408 (2017).
[Crossref]

J. Chem. Phys. (1)

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Toth, L. Palfalvi, L. Tokodi, J. Hebling, and J. A. Fülöp, “Scalable broadband OPCPA in lithium niobate with signal angular dispersion,” Opt. Commun. 370, 250–255 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[Crossref] [PubMed]

L. Canova, X. Chen, A. Trisorio, A. Jullien, A. Assion, G. Tempea, N. Forget, T. Oksenhendler, and R. Lopez-Martens, “Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF,” Opt. Lett. 34(9), 1333–1335 (2009).
[Crossref] [PubMed]

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
[Crossref] [PubMed]

O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).
[Crossref] [PubMed]

M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
[Crossref] [PubMed]

M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
[Crossref] [PubMed]

A. Boulesbaa, O. Isaienko, A. Tuladhar, and E. Borguet, “Generation of sub-30-fs microjoule mid-infrared pulses for ultrafast vibrational dynamics at solid/liquid interfaces,” Opt. Lett. 38(23), 5008–5011 (2013).
[Crossref] [PubMed]

S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
[Crossref] [PubMed]

G. M. Archipovaite, S. Petit, J.-C. Delagnes, and E. Cormier, “100 kHz Yb-fiber laser pumped 3 μm optical parametric amplifier for probing solid-state systems in the strong field regime,” Opt. Lett. 42(5), 891–894 (2017).
[Crossref] [PubMed]

J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 microm signal and a 1.064 um pump,” Opt. Lett. 30(15), 1974–1976 (2005).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (1)

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5(2), 021034 (2015).
[Crossref]

Science (1)

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Noncollinear phase-matching in the walk-off compensated geometry using a KTA crystal cut at θ = 42°. in the XZ plane. The two optic axes located at ± 14° from Z are not shown. kp, ks, ki are the pump, signal, and idler wave vector, respectively. (b) Angular dispersion introduced by a 40.96-line/mm reflection grating in the unit of µrad/nm as a function of angle of incidence and wavelength. The dashed line corresponds to our experimental, wavelength-dependent angle of incidence on the grating.
Fig. 2
Fig. 2 Schematic of the dual-beam setup for the generation of broadband, angular dispersion compensated MIR pulses. BSp: beam splitter, BS: beam sampler, WLCG: white-light continuum generator, WP: half-wave plate, PB: Brewster-type thin film polarizing beam splitter, Delay: delay stage, FS: fused silica window, CHM: chirped mirror, Si: silicon window, LPF: long-pass filter, BD: beam dump. DM: dichroic mirror, CM1 and CM2: spherical concave mirrors, G: grating. OPA1 and OPA2: optical parametric amplifier no. 1 and 2 based on PPLN and KTA, respectively. All lenses, wave plates, crystals, and filters are AR-coated.
Fig. 3
Fig. 3 SHG-FROG data obtained for the compressed, 38-fs, 7.8-μJ signal pulses. Measured (a) and retrieved (b) SHG-FROG spectrogram, and reconstructed temporal (c) and spectral (d) intensity and phase. The measured spectrum is shown by the symbols in (d) and the symbols in (c) correspond to its Fourier transform. The FROG-error of the reconstruction for a grid size of 64 × 64 points was 0.006.
Fig. 4
Fig. 4 SHG-FROG data obtained for the compressed, 53-fs, 2.3-μJ idler pulses. Measured (a) and retrieved (b) SHG-FROG spectrogram, and reconstructed temporal (c) and spectral (d) intensity and phase. The measured spectrum is shown by the symbols in (d) and the symbols in (c) correspond to its Fourier transform. The FROG-error of the reconstruction for a grid size of 64 × 64 points was 0.005.
Fig. 5
Fig. 5 Near-field spatial beam profile of the 780-mW signal pulses measured at a distance of 0.8 m behind the KTA crystal with w1/e2(horizontal) = 2.4 mm and w1/e2(vertical) = 2.1 mm.
Fig. 6
Fig. 6 (a)-(d) Near-field spatial beam profiles of the angular-dispersion-corrected, 231-mW idler pulses measured at different distances from the up-collimating spherical mirror. The 1/e2 Gaussian radii in the horizontal and vertical planes are 1.1 and 0.9 mm (a), 1.6 and 1.4 mm (b), 2.0 and 1.9 mm (c), and 2.8 and 2.7 mm (d), respectively. The Rayleigh length is ~1.0 m, which agrees with that of a diffraction-limited TEM00 beam.
Fig. 7
Fig. 7 Beam caustic data measured for the 780-mW, 38-fs signal (a) and the 231-mW, 53-fs, angular-dispersion-compensated idler (b) beam. The extracted M2 values in the horizontal and vertical plane are 1.28 and 1.37 for the signal pulses and 1.33 and 1.21 for the idler pulses, respectively.
Fig. 8
Fig. 8 Spectral f-2f interferometric data taken for the angular-dispersion-compensated 3.1-µm idler beam. No active CEP stabilization was employed. (a) f-2f fringes as a function of time with and without a 2-mm thick UVFS plate in the supercontinuum prior to SHG. The plate was removed at 8.25 s. (b) f-2f spectra extracted from panel (a) at the dashed lines at 7.7 and 9.0 s corresponding to data recorded with and without the UVFS plate, respectively. (c) f-2f fringes recorded over a 1-min time period at a sampling rate and integration time of 10 Hz and 100 ms, respectively. (d) The time-dependent CEP jitter extracted from the data in panel (c) corresponding to an RMS value of 54 mrad.
Fig. 9
Fig. 9 High-harmonics generated by angular-dispersion-compensated, 3.1-µm pulses in a 200-µm-thick YAG window. (a) 9th-harmonic recorded using an integration time of 1 s. A UG5 color glass filter was used to suppress possible stray light effects. (b) Intensity dependence of the 5th and 7th-order harmonic yield. The lines show intensity scaling following a 5th and 7th-order power law (green and red line respectively).