Abstract

The unknown emissivity of materials is a huge obstacle in multi-wavelength pyrometry (MWP). It leads to a set of ill-posed equations that cannot be directly inverted to obtain the true temperature from a set of multi-wavelength measurements. Constraint optimization algorithms such as the gradient projection (GP) and internal penalty function (IPF) algorithms provide solutions without any emissivity model assumptions but require a narrow fixed emissivity range and an appropriate initial emissivity input value, otherwise, accuracy and computational efficiency are greatly affected. Here, we propose a generalized inverse matrix-exterior penalty function (GIM-EPF) algorithm to realize an efficient and accurate inversion without limiting the emissivity range in advance. First, a set of emissivities is obtained by the generalized inverse matrix method; these emissivities are used as initial values in the exterior penalty function iteration algorithm, from which temperature and spectral emissivity are obtained. Simulation results show that the GIM-EPF algorithm provides results superior to IPF, especially in computational efficiency. The proposed GIM-EPF method is 8 times faster than the IPF method with a 0.56% relative error at the 1800 K true temperature. The GIM-EPF method also allows near real-time diagnosis of rocket exhaust flame temperature. Rocket nozzle temperature experiment results show that the temperatures derived by the GIM-EPF algorithm agree well with the theoretical design temperature and the IPF inversion temperature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directly data processing algorithm for multi-wavelength pyrometer (MWP)

Jian Xing, Bo Peng, Zhao Ma, Xin Guo, Li Dai, Weihong Gu, and Wenlong Song
Opt. Express 25(24) 30560-30574 (2017)

Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP)

Jian Xing, R.S. Rana, and Weihong Gu
Opt. Express 24(17) 19185-19194 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).
  2. T. Matsumoto, T. Koizumi, Y. Kawakami, K. Okamoto, and M. Tomita, “Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements,” Opt. Express 21(25), 30964–30974 (2013).
    [Crossref] [PubMed]
  3. S. V. Onufriev, “Measuring the temperature of substances upon fast Heating with a current pulse,” Bull. Russ. Acad. Sci., Physics 82(4), 372–379 (2018).
    [Crossref]
  4. A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
    [Crossref]
  5. F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
    [Crossref]
  6. A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).
  7. T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
    [Crossref]
  8. S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
    [Crossref]
  9. T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
    [Crossref] [PubMed]
  10. D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
    [Crossref]
  11. V. Scharf and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
    [Crossref]
  12. T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
    [Crossref] [PubMed]
  13. D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
    [Crossref]
  14. J. S. Pérez-Huerta, T. Saucedo-Anaya, I. Moreno, D. Ariza-Flores, and B. Saucedo-Orozco, “Digital holographic interferometry applied to the investigation of ignition process,” Opt. Express 25(12), 13190–13198 (2017).
    [Crossref] [PubMed]
  15. D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).
  16. G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
    [Crossref] [PubMed]
  17. M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
    [Crossref]
  18. T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
    [Crossref]
  19. P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 071601 (1988).
  20. G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 539–554 (1992).
    [Crossref]
  21. M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
    [Crossref]
  22. H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
    [Crossref]
  23. P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).
  24. X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
    [Crossref]
  25. J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
    [Crossref]
  26. J. Xing, R. S. Rana, and W. Gu, “Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 24(17), 19185–19194 (2016).
    [Crossref] [PubMed]
  27. J. Xing, B. Peng, Z. Ma, X. Guo, L. Dai, W. Gu, and W. Song, “Directly data processing algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 25(24), 30560–30574 (2017).
    [Crossref] [PubMed]

2018 (3)

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

S. V. Onufriev, “Measuring the temperature of substances upon fast Heating with a current pulse,” Bull. Russ. Acad. Sci., Physics 82(4), 372–379 (2018).
[Crossref]

2017 (3)

2016 (2)

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

J. Xing, R. S. Rana, and W. Gu, “Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 24(17), 19185–19194 (2016).
[Crossref] [PubMed]

2015 (1)

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

2014 (3)

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
[Crossref]

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
[Crossref]

2010 (2)

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
[Crossref]

2007 (3)

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
[Crossref]

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
[Crossref]

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

2005 (1)

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

2004 (1)

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
[Crossref]

2001 (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

2000 (2)

V. Scharf and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
[Crossref]

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

1992 (1)

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 539–554 (1992).
[Crossref]

1991 (1)

M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
[Crossref]

1988 (1)

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 071601 (1988).

Allemand, C.

M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
[Crossref]

Ariza-Flores, D.

Baudin, G.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Bendada, A.

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
[Crossref]

Benedic, F.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
[Crossref]

Bruno, P.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
[Crossref]

Cheng, X.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
[Crossref]

Christiansson, A.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Chu, Z. X.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

Coates, P.

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 071601 (1988).

Cui, S.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Dai, J. M.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

Dai, L.

Duan, M.

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

Eagar, T. W.

M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
[Crossref]

Farahmand, P.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
[Crossref]

Fralick, G.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

Fu, T.

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[Crossref] [PubMed]

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
[Crossref]

Gathers, G.

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 539–554 (1992).
[Crossref]

Genetier, M.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Gore, J.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

Gu, W.

Guo, X.

Hagqvist, P.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Han, D.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

He, Y.

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

Kan, R.

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

Kastek, M.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
[Crossref]

Katzir, A.

V. Scharf and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
[Crossref]

Kawakami, Y.

Khan, M. A.

M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
[Crossref]

Kim, J.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

Koizumi, T.

Kovacevic, R.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
[Crossref]

Lamontagne, M.

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
[Crossref]

Legrand, J.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Lennartson, B.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Li, S.

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

Liang, M.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
[Crossref]

Liu, J.

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[Crossref] [PubMed]

Liu, S.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
[Crossref]

Lucht, R. P.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

Ma, Z.

Madura, H.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
[Crossref]

Matsumoto, T.

Moreno, I.

Ng, D.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

Okamoto, K.

Onufriev, S. V.

S. V. Onufriev, “Measuring the temperature of substances upon fast Heating with a current pulse,” Bull. Russ. Acad. Sci., Physics 82(4), 372–379 (2018).
[Crossref]

Peng, B.

Pérez-Huerta, J. S.

Piatkowski, T.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
[Crossref]

Pigeat, P.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
[Crossref]

Pina, V.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Qi, W.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Ramel, D.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Rana, R. S.

Rancdarbord, I.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Satija, A.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

Saucedo-Anaya, T.

Saucedo-Orozco, B.

Scharf, V.

V. Scharf and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
[Crossref]

Seifter, A.

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Sergeev, S.

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
[Crossref]

Shi, C.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

Sikström, F.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Song, W.

Sun, B.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
[Crossref]

Sun, W.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Sun, X.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
[Crossref]

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Sun, X. G.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

Svet, D.

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
[Crossref]

Swift, D. C.

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Tomita, M.

Vasseur, P.

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

Wang, Z.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
[Crossref]

Weng, Y.

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

Xie, J.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
[Crossref]

Xing, J.

Xu, Z.

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

Yuan, G. B.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

Zeng, J.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

Zhang, F.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Zhang, G.

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

Zhao, H.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

Zhong, M.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

Zong, A.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Zhang, J. Liu, Z. Xu, Y. He, and R. Kan, “Characterization of temperature non-uniformity over a premixed CH 4 –air flame based on line-of-sight TDLAS,” Appl. Phys. B 122(1), 3–11 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

V. Scharf and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
[Crossref]

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
[Crossref]

Bull. Russ. Acad. Sci., Physics (1)

S. V. Onufriev, “Measuring the temperature of substances upon fast Heating with a current pulse,” Bull. Russ. Acad. Sci., Physics 82(4), 372–379 (2018).
[Crossref]

Combust. Flame (1)

D. Han, A. Satija, J. Kim, Y. Weng, J. Gore, and R. P. Lucht, “Dual-pump vibrational cars measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition,” Combust. Flame 181(3), 239–250 (2000).

High Temp. High Press. (1)

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 071601 (1988).

Infrared Phys. Technol. (2)

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
[Crossref]

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
[Crossref]

Int. J. Thermophys. (3)

I. Rancdarbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, “Emission of gas and Al2O3 smoke in Gas-Al particle deflagration: experiments and emission modeling for explosive fireballs,” Int. J. Thermophys. 39(3), 152–160 (2018).

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 539–554 (1992).
[Crossref]

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
[Crossref]

J. Heat Transfer (2)

T. Fu, J. Liu, M. Duan, and S. Li, “Sub-pixel temperature measurements in hypersonic plasma jet environments using high speed multispectral pyrometry,” J. Heat Transfer 140(7), 1601–1609 (2018).
[Crossref]

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 051602 (2010).
[Crossref]

Meas. Sci. Technol. (1)

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Meas. Tech. (1)

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
[Crossref]

Measurement (2)

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
[Crossref]

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
[Crossref]

Phys. Rev. B (1)

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Rev. Sci. Instrum. (3)

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[Crossref] [PubMed]

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

M. A. Khan, C. Allemand, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Emissivity simulation result based on directly generalized inverse matrix only.
Fig. 2
Fig. 2 Six targets emissivity simulation result based on different algorithms with no noise.
Fig. 3
Fig. 3 Running time comparison to different algorithms with no noise for A-F materials.
Fig. 4
Fig. 4 Six targets emissivity simulation result based on different algorithms with 5% random noise on Vi.
Fig. 5
Fig. 5 Six materials running time based on different algorithms with 5% random noise on Vi
Fig. 6
Fig. 6 Temperature comparison of two algorithms.
Fig. 7
Fig. 7 Running time comparison of two algorithms.

Tables (11)

Tables Icon

Table 1 Temperature Simulation by Generalized Inverse Matrix Only (True Temperature T = 1800K)

Tables Icon

Table 2 Relativity Error (%) of Temperature Simulation Results by GIM-EPF Algorithm to Different c1, but Different c1has the Same Results (p = 2, True Temperature T = 1800K)

Tables Icon

Table 3 Emissivity Simulation Results by GIM-EPF to Different c1 (p = 2, True Temperature T = 1800K)

Tables Icon

Table 4 Running Time (s) by GIM-EPF Algorithm to Different c1 (p = 2, True Temperature T = 1800K)

Tables Icon

Table 5 Minimum of Target Function minf = Eq. (17) to Different c1 (p = 2, True Temperature T = 1800K)

Tables Icon

Table 6 Relativity Error (%) of Temperature Simulation Results by GIM-EPF Algorithm to Different p, but Different p has the Same Results (c1 = 0.05, True Temperature T = 1800K)

Tables Icon

Table 7 Emissivity Simulation Results by GIM-EPF to Different c1 (p = 2, True Temperature T = 1800K)

Tables Icon

Table 8 Running Time (s) by GIM-EPF Algorithm to Different p (c1 = 0.05, True Temperature T = 1800K)

Tables Icon

Table 9 Minimum of Target Function minf = Eq. (17) to Different p (c1 = 0.05, True Temperature T = 1800K)

Tables Icon

Table 10 Relativity Error (%) of Temperature Simulation Results with Different Algorithm (True Temperature T = 1800K)

Tables Icon

Table 11 Relativity Error (%) of Temperature Simulation Results with Different Algorithm (True Temperature T = 1800K, 5% Random Noise on Vi)

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

V i = A λ i ε ( λ i , T ) 1 λ i 5 ( e C 2 / λ i T 1 ) ( i = 1 , 2 , ... , n )
V i = A λ i λ i 5 e C 2 λ i T , [ ε ( λ i , T ) = 1.0 f o r b l a c k b o d y ]
V i V i = ε ( λ i , T ) e C 2 λ i T e C 2 λ i T
ln ( V i V i ) C 2 λ i T = C 2 λ i T + ln ε ( λ i , T )
y 1 = x 1 + a 1 Z y 2 = x 2 + a 2 Z y n = x n + a n Z
[ y 1 y 2 y n ] = [ 1 0 0 a 1 0 1 0 0 a 2 0 1 0 0 1 a n ] × [ x 1 x 2 x n Z ]
Y = A X
A G A = A G A G = G ( A G ) H = A G ( G A ) H = G A
A + = ( A H A ) 1 A H
A + = A H ( A H A ) 1
X = A + Y
i = 1 n [ T i E ( T i ) ] 2 = 0
min f ( x ) = i = 1 n [ T i E ( T i ) ] 2 0
ln ( V i V i ) C 2 λ i T = C 2 λ i T + ln ε ( λ i , T )
T i = C 2 λ i 1 x i + D i
E ( T i ) = 1 n i = 1 n C 2 λ i 1 x i + D i
min f ( x )= i = 1 n [ C 2 λ i 1 x i + D i 1 n i = 1 n C 2 λ i 1 x i + D i ] 2
{ min f ( x ) = i = 1 n [ C 2 λ i 1 x i + D i 1 n i = 1 n C 2 λ i 1 x i + D i ] 2 x i < 0 .
{ min f ( x ) g i ( x ) 0 , i = 1 , 2 , ... , k , k Z
F ( x ) = f ( x ) + P i = 1 k m i n [ ( 0 , g i 2 ( x ) ) ]
x i = [ x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 ] T
b = [ 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 ] T
A = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

Metrics