Abstract

We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few µm2, yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Kinoform microlenses for focusing into microfluidic channels

Hamish C. Hunt and James S. Wilkinson
Opt. Express 20(9) 9442-9457 (2012)

Multi-parameter analysis using photovoltaic cell-based optofluidic cytometer

Chien-Shun Yan and Yao-Nan Wang
Biomed. Opt. Express 7(9) 3585-3595 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
    [Crossref]
  2. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  3. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  4. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  5. Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
    [Crossref]
  6. X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
    [Crossref]
  7. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
    [Crossref] [PubMed]
  8. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  9. Y. Shiau, “Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits,” IEEE Trans. Microw. Theory Tech. 24(11), 869–872 (1976).
    [Crossref]
  10. H. Zhou, Z. Li, L. Shang, A. Mickelson, and D. S. Filipovic, “On-Chip Wireless Optical Broadcast Interconnection Network,” J. Lightwave Technol. 28(24), 3569–3577 (2010).
  11. M. L. Brongersma, “Plasmonics: Engineering optical antennas,” Nat. Photonics 2(5), 270–272 (2008).
    [Crossref]
  12. A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
    [Crossref] [PubMed]
  13. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  14. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  15. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  16. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [Crossref] [PubMed]
  17. C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
    [Crossref]
  18. J. P. Robinson and M. Roederer, “Flow cytometry strikes gold,” Science 350(6262), 739–740 (2015).
    [Crossref] [PubMed]
  19. X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
    [Crossref] [PubMed]
  20. N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
    [Crossref] [PubMed]
  21. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  22. K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
    [Crossref] [PubMed]
  23. K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
    [Crossref] [PubMed]
  24. X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
    [Crossref]
  25. T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
    [Crossref] [PubMed]
  26. P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing (McGraw Hill Education, 2014).
  27. R. Voelkel, “Wafer-scale micro-optics fabrication,” Adv. Opt. Technol. 1(3), 135–150 (2012).
  28. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  29. O. Kononchuk and B. Y. Nguyen, Silicon-on-insulator (SOI) technology: Manufacture and applications (Elsevier, 2014).
  30. R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
    [Crossref]
  31. M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
    [Crossref] [PubMed]
  32. D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
    [Crossref] [PubMed]
  33. G. Testa, G. Persichetti, and R. Bernini, “Micro flow cytometer with self-aligned 3D hydrodynamic focusing,” Biomed. Opt. Express 6(1), 54–62 (2014).
    [Crossref] [PubMed]
  34. S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
    [Crossref] [PubMed]
  35. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1982).
  36. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
    [Crossref]
  37. K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
    [Crossref] [PubMed]
  38. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  39. M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
    [Crossref] [PubMed]
  40. M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
    [Crossref] [PubMed]
  41. B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
    [Crossref] [PubMed]
  42. R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
    [Crossref] [PubMed]
  43. B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
    [Crossref]

2017 (3)

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

2016 (5)

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
[Crossref] [PubMed]

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

2015 (2)

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

J. P. Robinson and M. Roederer, “Flow cytometry strikes gold,” Science 350(6262), 739–740 (2015).
[Crossref] [PubMed]

2014 (3)

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

G. Testa, G. Persichetti, and R. Bernini, “Micro flow cytometer with self-aligned 3D hydrodynamic focusing,” Biomed. Opt. Express 6(1), 54–62 (2014).
[Crossref] [PubMed]

2013 (5)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

2012 (4)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

R. Voelkel, “Wafer-scale micro-optics fabrication,” Adv. Opt. Technol. 1(3), 135–150 (2012).

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

2011 (6)

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

2010 (5)

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

H. Zhou, Z. Li, L. Shang, A. Mickelson, and D. S. Filipovic, “On-Chip Wireless Optical Broadcast Interconnection Network,” J. Lightwave Technol. 28(24), 3569–3577 (2010).

2008 (1)

M. L. Brongersma, “Plasmonics: Engineering optical antennas,” Nat. Photonics 2(5), 270–272 (2008).
[Crossref]

2006 (3)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
[Crossref] [PubMed]

1976 (1)

Y. Shiau, “Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits,” IEEE Trans. Microw. Theory Tech. 24(11), 869–872 (1976).
[Crossref]

Ahmadi, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Alocilja, E.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Althani, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Aughenbaugh, J.

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Aziz, H.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Baets, R.

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Barat, D.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Bellieres, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Benazzi, G.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Bernini, R.

Bienstman, P.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Bientsman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Blasi, T.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Bock, N.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Bocsi, J.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyes, W. K.

R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
[Crossref] [PubMed]

Brimont, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, “Plasmonics: Engineering optical antennas,” Nat. Photonics 2(5), 270–272 (2008).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

Carpenter, A. E.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Cerveira, J.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Cheng, J.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Cheng, Z.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Cheung, K.

K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
[Crossref] [PubMed]

Cheung, K. C.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Chung, M. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Davies, D.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

DeRosa, M.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Di Berardino, M.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Ding, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Dong, W. F.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Dumon, P.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

El-Deiry, W. S.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Etcheverry, S.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Fang, Q.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Faridi, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Filby, A.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Filipovic, D. S.

Frankowski, M.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Futia, G. L.

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

García-Meca, C.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Gawad, S.

K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Gibson, E. A.

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

Granier, R.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Griol, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Grzybowski, B. A.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Guo, T. Y.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Haghgooie, R.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hebeisen, M.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hennig, H.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Hoorfar, M.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Huang, N. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Huang, T. J.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Kotz, K. T.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Kowalczyk, B.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Kumar, T.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Kummrow, A.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Kurabayashi, K.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Lagzi, I.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Lapsley, M. I.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Laurell, F.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Lechago, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Li, C.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Li, Q.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Li, Z.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

Lin, S. C.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Liu, R.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Longsine, W.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Losilla, N. S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Luka, G.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Luyssaert, B.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Malki, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Mao, X.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Margulis, W.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Martí, J.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Mas, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

McCoy, J. P.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Mickelson, A.

Mittag, A.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Morgan, H.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Morthier, G.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Mowlem, M. C.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Najjaran, H.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Nawaz, A. A.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Neukammer, J.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Ortenzio, J. N. R.

R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Patterson, J. O.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Persichetti, G.

Petrofsky, A. C.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Pierzchalski, A.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Potcoava, M. C.

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

Priem, G.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ragusch, H.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Ramachandraiah, H.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

Rees, P.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Renaud, P.

K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
[Crossref] [PubMed]

Robinson, J. P.

J. P. Robinson and M. Roederer, “Flow cytometry strikes gold,” Science 350(6262), 739–740 (2015).
[Crossref] [PubMed]

Roederer, M.

J. P. Robinson and M. Roederer, “Flow cytometry strikes gold,” Science 350(6262), 739–740 (2015).
[Crossref] [PubMed]

Roelkens, G.

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Rogier, H.

Russom, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Sánchez, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

Schade-Kampmann, G.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Schlaepfer, I. R.

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

Schmidt, M.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Seo, J. H.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Shang, L.

Shiau, Y.

Y. Shiau, “Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits,” IEEE Trans. Microw. Theory Tech. 24(11), 869–872 (1976).
[Crossref]

Simon, P.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Spencer, D.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Summers, H. D.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Sun, H. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Tárnok, A.

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

Testa, G.

Theis, F. J.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Theisen, J.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tompkins, R. G.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Toner, M.

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Traub, M. C.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Truskett, V. N.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Tsang, H. K.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Van Acoleyen, K.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Voelkel, R.

R. Voelkel, “Wafer-scale micro-optics fabrication,” Adv. Opt. Technol. 1(3), 135–150 (2012).

Watts, B. R.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Wolthers, K.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

Xia, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xie, X.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Xu, B. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xu, C. Q.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Xu, Y.

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Zhang, H. L.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Zhang, Y. L.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Zhang, Y. S.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Zhang, Z. Y.

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Zhao, Y.

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zhou, H.

Zucker, R. M.

R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
[Crossref] [PubMed]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Opt. Technol. (1)

R. Voelkel, “Wafer-scale micro-optics fabrication,” Adv. Opt. Technol. 1(3), 135–150 (2012).

Anal. Methods (1)

X. Xie, Z. Cheng, Y. Xu, R. Liu, Q. Li, and J. Cheng, “A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing,” Anal. Methods 9(7), 1201–1212 (2017).
[Crossref]

Annu. Rev. Chem. Biomol. Eng. (1)

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

X. Mao, A. A. Nawaz, S. C. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 24113 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Curr. Opin. Colloid Interface Sci. (1)

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparation: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Cytometry A (3)

R. M. Zucker, J. N. R. Ortenzio, and W. K. Boyes, “Characterization, Detection, and counting of Metal Nanoparticles Using Flow Cytometry,” Cytometry A 89(2), 169–183 (2016).
[Crossref] [PubMed]

K. C. Cheung, M. Di Berardino, G. Schade-Kampmann, M. Hebeisen, A. Pierzchalski, J. Bocsi, A. Mittag, and A. Tárnok, “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A 77(7), 648–666 (2010).
[Crossref] [PubMed]

K. Cheung, S. Gawad, and P. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry A 65(2), 124–132 (2005).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Shiau, “Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits,” IEEE Trans. Microw. Theory Tech. 24(11), 869–872 (1976).
[Crossref]

J. Biomed. Opt. (1)

M. C. Potcoava, G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, “Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells,” J. Biomed. Opt. 19(11), 111605 (2014).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Lab Chip (3)

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip 12(1), 118–126 (2012).
[Crossref] [PubMed]

Light Sci. Appl. (2)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of material: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref]

Micromachines (Basel) (1)

Y. S. Zhang, B. R. Watts, T. Y. Guo, Z. Y. Zhang, C. Q. Xu, and Q. Fang, “Optofluidic device based microflow cytometers for particle/cell detection: a review,” Micromachines (Basel) 7(4), 70 (2016).
[Crossref]

Nat. Commun. (1)

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7, 10256 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Photonics (6)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(8), 746–751 (2013).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

M. L. Brongersma, “Plasmonics: Engineering optical antennas,” Nat. Photonics 2(5), 270–272 (2008).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

NPG Asia Mater. (1)

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Science (1)

J. P. Robinson and M. Roederer, “Flow cytometry strikes gold,” Science 350(6262), 739–740 (2015).
[Crossref] [PubMed]

Sensors (Basel) (2)

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications,” Sensors (Basel) 15(12), 30011–30031 (2015).
[Crossref] [PubMed]

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow Cytometers with Integrated Hydrodynamic Focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Technology (Singap World Sci) (1)

K. T. Kotz, A. C. Petrofsky, R. Haghgooie, R. Granier, M. Toner, and R. G. Tompkins, “Inertial focusing cytometer with integrated optics for particle characterization,” Technology (Singap World Sci) 1(1), 27–36 (2013).
[Crossref] [PubMed]

Other (4)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1982).

P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing (McGraw Hill Education, 2014).

O. Kononchuk and B. Y. Nguyen, Silicon-on-insulator (SOI) technology: Manufacture and applications (Elsevier, 2014).

R. Baets, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, B. Luyssaert, G. Priem, G. Morthier, P. Bienstman, and D. Van Thourhout, “Silicon-on-insulator based nano-photonics: Why, How, What for?” in 2nd IEEE International Conference Group IV Photonics (IEEE, 2005), pp. 168–170.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Polar directivity diagram of the designed antennas as a function of the number of directors. Blue numbers represent the directivity value while black numbers account for the angular directions. (b) Artwork displaying the final antenna configuration used for the experimental microflow cytometer, made up of a silicon inverted taper nanoantenna and two directors. A 2-µm thick layer of SiO2 covered the antennas in the experiments. (c) Scheme of the proposed microflow cytometer based on the use of the designed silicon antennas. The targets flow within the microchannel and the characteristic scattered pulse is retrieved at the receiving set of antennas.
Fig. 2
Fig. 2 3D simulations of the electromagnetic power scattered by polysterene microspheres performed with the CST Microwave Studio Suite commercial software. (a) Schematic top view of a microfluidic channel where a polystyrene bead is flowing. The light beam radiated by the emitting antenna illuminates the targets (at the center of the channel in the transverse or x-direction) for ten different longitudinal positions, from y = −5 µm to y = 4 µm, with steps of = 1 µm. In an experiment, a flowing particle will be in a different position at each instant. Therefore, the pulse obtained by simulating the power received as a function of these set of positions represents a discretized version of the pulse received at the detector as a function of time as a microsphere passes in front of the antenna (up to a horizontal scale factor that depends on the particle speed). (b) The power P scattered from the target at each of the 10 positions shown in Fig. 2(a) (events) is retrieved for each receiving antenna. The value of PN = 10·log10 (P/PB) associated with each event is represented as a solid circle (PB accounts for the power of the baseline configuration when no targets are within the channel). The resulting set of circles is interpolated by a red curve, obtaining a different characteristic pulse shape for each of the analyzed reception angles.
Fig. 3
Fig. 3 Two-dimensional distribution of the power intensity when no targets are flowing through the channel (a) and when the target is located at y = −3 µm for the 45° receiving antenna configuration (b). Note that the color bar stands for the power intensity (dB) normalized to the maximum power displayed in these 2D cross sections.
Fig. 4
Fig. 4 3D simulations of the electromagnetic power scattered by 2-µm polysterene spheres, with x0 0 or z0 0. Four different cases were considered: x0 = 2 µm, z0 = 0 µm (orange); x0 = −2 µm, z0 = 0 µm (yellow); x0 = 0 µm, z0 = 1 µm (purple); x0 = 0 µm, z0 = −1 µm (blue). (a) Power received at the 30° antenna. (b) Power received at the 45° antenna.
Fig. 5
Fig. 5 (a) Optical microscope image of the fabricated microflow cytometer. (b) Optical microscope image of the complete device (except for the grating couplers), including the reservoirs and the microfluidic channel. The border of the top PDMS layer is also displayed. Note that, at this scale, the position of the optical system is not visible. (c) Power efficiency (P) simultaneously measured at 30° and 45° during a four-second interval. In this case, P = 10·log10 (PRX/PTX), where PTX is the power injected to the emitting antenna, and PRX is the power retrieved at the receiving antennas. Very similar pulse shapes are measured if compared with those calculated numerically (Fig. 2). The SNR level for the 45° configuration also matches the results anticipated by the simulations.
Fig. 6
Fig. 6 (a), (b), (c) Different pulse shapes were simulated at different angles for 1-µm polystyrene targets, in analogy to the 2-µm microspheres case shown in Fig. 2(b).

Metrics