Abstract

Perfect absorber type devices are well-suited to many applications, such as solar cells, spatial light modulators, bio-sensors, and highly-sensitive photo-detectors. In such applications, a method for the design and fabrication of devices in a simple and efficient way, while at the same time maintaining design control over the key performance characteristics of resonant frequency, reflection coefficient at resonance and quality factor, would be particularly advantageous. In this work we develop such a method, based on eigenmode analysis and critical coupling theory, and apply it to the design of reconfigurable phase-change metasurface absorber devices. To validate the method, the design and fabrication of a family of absorbers was carried out with a range of ‘on-demand’ quality factors, all operating at the same resonant frequency and able to be fabricated simply and simultaneously on the same chip. Furthermore, by switching the phase-change layer between its amorphous and crystalline states, we show that our devices can provide an active or reconfigurable functionality.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer
Opt. Mater. Express 8(8) 2264-2275 (2018)

Design of practicable phase-change metadevices for near-infrared absorber and modulator applications

Santiago García-Cuevas Carrillo, Geoffrey R. Nash, Hasan Hayat, Martin J. Cryan, Maciej Klemm, Harish Bhaskaran, and C. David Wright
Opt. Express 24(12) 13563-13573 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
    [Crossref]
  2. G. Eleftheriades and M. Selvanayagam, “Transforming electromagnetics using metamaterials,” IEEE Microw. Mag. 13(2), 26–38 (2012).
    [Crossref]
  3. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [Crossref] [PubMed]
  4. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [Crossref] [PubMed]
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  6. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  7. H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  8. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  9. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  11. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  12. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  13. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  14. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  15. S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer, 2009).
  16. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  17. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  18. J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
    [Crossref]
  19. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
    [Crossref] [PubMed]
  20. I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, D. H. Ahn, S. O. Park, S. W. Nam, and J. T. Moon, “High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications,” in Symposium on VLSI Technology (2010), pp. 203–204.
    [Crossref]
  21. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  22. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
    [Crossref] [PubMed]
  23. C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
    [Crossref]
  24. Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
    [Crossref] [PubMed]
  25. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref] [PubMed]
  26. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
    [Crossref] [PubMed]
  27. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref] [PubMed]
  28. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  29. Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
    [Crossref] [PubMed]
  30. T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
    [Crossref]
  31. S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref] [PubMed]
  32. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
    [Crossref] [PubMed]
  33. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  34. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
    [Crossref]
  35. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  36. S. Ogawa and M. Kimata, “Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
    [Crossref] [PubMed]
  37. K. Fan, J. Y. Suen, and W. J. Padilla, “Graphene metamaterial spatial light modulator for infrared single pixel imaging,” Opt. Express 25(21), 25318–25325 (2017).
    [Crossref] [PubMed]
  38. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  39. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
    [Crossref]
  40. T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7(1), 39–79 (2018).
    [Crossref]
  41. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
    [Crossref]
  42. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  43. A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
    [Crossref] [PubMed]
  44. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  45. R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
    [Crossref] [PubMed]
  46. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  47. C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
    [Crossref] [PubMed]
  48. S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
    [Crossref] [PubMed]
  49. H. a Haus, “Waves and Fields in Optoelectronics,” (1984).
  50. Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
    [Crossref] [PubMed]
  51. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  52. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
    [Crossref]
  53. Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
    [Crossref] [PubMed]
  54. R. Horst, P. M. Pardalos, and N. Van Thoai, Introduction to Global Optimization (Springer Science & Business Media, 2000).
  55. R. Horst and H. Tuy, Global Optimization: Deterministic Approaches (Springer Science & Business Media, 2013).
  56. Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
    [Crossref] [PubMed]
  57. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]

2018 (2)

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7(1), 39–79 (2018).
[Crossref]

2017 (11)

S. Ogawa and M. Kimata, “Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

K. Fan, J. Y. Suen, and W. J. Padilla, “Graphene metamaterial spatial light modulator for infrared single pixel imaging,” Opt. Express 25(21), 25318–25325 (2017).
[Crossref] [PubMed]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
[Crossref] [PubMed]

Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
[Crossref] [PubMed]

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

2016 (4)

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

2015 (5)

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

2014 (8)

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

2013 (4)

2012 (7)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

G. Eleftheriades and M. Selvanayagam, “Transforming electromagnetics using metamaterials,” IEEE Microw. Mag. 13(2), 26–38 (2012).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

2010 (1)

2009 (1)

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

2008 (3)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

2007 (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

2006 (1)

1998 (1)

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alaee, R.

Albooyeh, M.

Alexeev, A. M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Au, Y.-Y.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
[Crossref] [PubMed]

Bai, Q.

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Bertolotti, J.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Bhaskaran, H.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
[Crossref] [PubMed]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Brueckl, H.

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
[Crossref]

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Carrillo, S. G.

Chen, H.-T.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Cheng, P.-J.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Cheng, Z.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Chou, B.-T.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Chou, Y.-H.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Chung, Y.-C.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Cialla-May, D.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Cryan, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Cryan, M. J.

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Da Silva, J. L. F.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Dai, N.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Della Valle, G.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Djurišic, A. B.

Dolling, G.

Elazar, J. M.

Eleftheriades, G.

G. Eleftheriades and M. Selvanayagam, “Transforming electromagnetics using metamaterials,” IEEE Microw. Mag. 13(2), 26–38 (2012).
[Crossref]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Enkrich, C.

Eom, S. H.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Evans, P. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Fan, K.

Feldmann, J.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Gruhler, N.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Haglund, R. F.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Hao, J.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Harats, M. G.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Hayat, H.

He, Q.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hengstler, D.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Ho, J.

Hong, K.-B.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Hong, M.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Hosseini, P.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

Hübner, U.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Huck, C.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Hugonin, J.-P.

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Jung, J.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Kang, Y.-S.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Khang, Y. H.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Kimata, M.

S. Ogawa and M. Kimata, “Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klemm, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

Knipper, R.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, H.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Lee, T.-Y.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Li, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Lin, S.-D.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Lin, T.-R.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Linden, S.

Liu, N.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Liu, Y.

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Lopez-Garcia, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Lu, T.-C.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Luo, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Ma, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Maier, S. A.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Maier, T.

Majewski, M. L.

Mayerhofer, T. G.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Mayerhöfer, T. G.

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7(1), 39–79 (2018).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Meyer, H.-G.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Miao, Z.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nash, G. R.

Neubrech, F.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Ng, R. J. H.

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Ogawa, S.

S. Ogawa and M. Kimata, “Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

Padilla, W. J.

K. Fan, J. Y. Suen, and W. J. Padilla, “Graphene metamaterial spatial light modulator for infrared single pixel imaging,” Opt. Express 25(21), 25318–25325 (2017).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J.-W.

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Pernice, W. H. P.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Perrin, M.

Popp, J.

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7(1), 39–79 (2018).
[Crossref]

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Pors, A.

Pucci, A.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Qiu, M.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Qu, C.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Rakic, A. D.

Ramakrishna, S.

Rapaport, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Rezaei, S. D.

Rios, C.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Ríos, C.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Ruiz de Galarreta, C.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sauvan, C.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Selvanayagam, M.

G. Eleftheriades and M. Selvanayagam, “Transforming electromagnetics using metamaterials,” IEEE Microw. Mag. 13(2), 26–38 (2012).
[Crossref]

Sendner, M.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Shih, J.-H.

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Sonnefraud, Y.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

Stegmaier, M.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

Suen, J. Y.

Sun, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Tretyakov, S.

Valentine, J. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Vogt, J.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Walter, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Weber, K.

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[Crossref] [PubMed]

Wei, C.

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wright, C. D.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
[Crossref] [PubMed]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Xiao, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yao, K.

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Yu, N.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
[Crossref]

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, L.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Zhu, Z.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

ACS Nano (2)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

T. G. Mayerhofer, R. Knipper, U. Hübner, D. Cialla-May, K. Weber, H.-G. Meyer, and J. Popp, “Ultra sensing by combining extraordinary optical transmission with perfect absorption,” ACS Photonics 2(11), 1567–1575 (2015).
[Crossref]

Adv. Funct. Mater. (1)

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile peconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Adv. Mater. (3)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

IEEE Microw. Mag. (1)

G. Eleftheriades and M. Selvanayagam, “Transforming electromagnetics using metamaterials,” IEEE Microw. Mag. 13(2), 26–38 (2012).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Light Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref] [PubMed]

Materials (Basel) (1)

S. Ogawa and M. Kimata, “Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7(1), 39–79 (2018).
[Crossref]

Nanotechnol. Rev. (1)

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Nat. Commun. (1)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Nat. Mater. (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Phys. Rev. Lett. (3)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: ndependent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Adv. (1)

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Sci. Rep. (4)

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, and T.-R. Lin, “Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers,” Sci. Rep. 7(1), 39813 (2017).
[Crossref] [PubMed]

Y.-Y. Au, H. Bhaskaran, and C. D. Wright, “Phase-change devices for simultaneous optical-electrical applications,” Sci. Rep. 7(1), 9688 (2017).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Other (5)

I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, D. H. Ahn, S. O. Park, S. W. Nam, and J. T. Moon, “High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications,” in Symposium on VLSI Technology (2010), pp. 203–204.
[Crossref]

S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer, 2009).

R. Horst, P. M. Pardalos, and N. Van Thoai, Introduction to Global Optimization (Springer Science & Business Media, 2000).

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches (Springer Science & Business Media, 2013).

H. a Haus, “Waves and Fields in Optoelectronics,” (1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) 2D cross section of the unit cell of the reconfigurable phase-change absorber device. Dimensions that define the optical response of the device are shown, as well as the different material layers used. (b) 3D schematic of (part of) the device.
Fig. 2
Fig. 2 (a) Perfect phase-change absorbers of various geometries optimized to possess desired quality factors (each color indicates devices with equal values of Q). (b) Width of the unit cell wuc against the corresponding value of Q (the data in this plot corresponds to the optimized devices in the region where curves cross in (a)). Dashed lines are guides for the eye only.
Fig. 3
Fig. 3 (a), (b), (c) Simulated reflectance spectra for designs with fixed values of wp and tgst and with Q = 4.5, 5, 5.5 respectively and with the GST layer in the amorphous (colored lines) and crystalline (black lines) states. (d), (e), (f) Experimental reflectance spectra for fabricated devices with the same designs as in top panels (and again with the GST in amorphous and crystalline phases). Insets in (d) to (f) show SEM images of the fabricated devices.
Fig. 4
Fig. 4 (a) Total, internal, and external decay rates as a function of Q. (b) Minimum reflectance and (c) coupling coefficient as a function of Q. Dashed lines in (b) and (c) are guides for the eye only.
Fig. 5
Fig. 5 (a) Modelled reflectance spectra for a family of phase-change absorbers (GST layer in the amorphous state) obtained by varying only the periodicity of the metasurface (the Al nanostrips). (b) Experimental reflectance spectra for fabricated devices having the same geometries as in (a).
Fig. 6
Fig. 6 (a) Internal decay rate as a function of the inverse of the plasmonic metasurface periodicity wuc (dashed line is a linear best-fit). (b) External decay rate as a function of the inverse of the plasmonic metasurface periodicity wuc (dashed line is a linear best-fit). c) Calculated values of Q using the data in (a) and (b) against the values for Q obtained from FEM modeling for the same structures (the dashed “45° line” is shown for visual guidance only).
Fig. 7
Fig. 7 SEM images of the fabricated phase-change absorber devices. (a) wuc = 816 nm, (b) wuc = 715 nm, (c) wuc = 643 nm, (d) wuc = 588 nm and (e) wuc = 544 nm.
Fig. 8
Fig. 8 Optical constants (permittivity) used in numerical simulations. (a) Real and imaginary parts of aluminium permittivity extracted from the work of Rakic et al. [57] (b) Real and imaginary part for the GST permittivity in the amorphous and crystalline state from the work by Ruiz de Galarreta et al. [23] (c) Real and imaginary part of ITO permittivity obtained by ellipsometry measurements.
Fig. 9
Fig. 9 (a) Reflectance spectra of the absorber device in the pristine (as-deposited) state as well as after several swithing (SET/RESET) cycles. (b) Optical microscope images of the device after a sequence of switching cycles.
Fig. 10
Fig. 10 (a) Schematic of an absorber device in which the top patterned metal layer also acts as a micro-heater to switch the phase-change layer beneath. (b) SEM image of the active area of a fabricated device of the type shown in (a). (c) Measured reflectance of device of the type shown in (b) as it is subjected to repeated cycling (by applying pulsed voltages to the micro-heater).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 τ = 1 τ 0 + 1 τ e
Γ( ω )=  1 τ e   1 τ 0 i( ω ω 0 ) 1 τ e +  1 τ 0 +i( ω ω 0 )  
1 Q =  2 ω 0  ( 1 τ 0 + 1 τ e )
P= dU dt =αU
U= U 0 e αt
P= α U 0 e αt = P 0 e t/ τ eng
P=  U τ eng =  ω 0 U Q

Metrics