Abstract

Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window

A. M. Andersson, Claes G. Granqvist, and J. R. Stevens
Appl. Opt. 28(16) 3295-3302 (1989)

Highly transparent light-harvesting window film

Byron Cocilovo, Aki Hashimura, Douglas J. Tweet, Tolis Voutsas, and Robert A. Norwood
Appl. Opt. 54(30) 8990-8998 (2015)

Next generation smart window display using transparent organic display and light blocking screen

Gyeong Woo Kim, Raju Lampande, Dong Cheol Choe, Ik Jang Ko, Jin Hwan Park, Ramchandra Pode, and Jang Hyuk Kwon
Opt. Express 26(7) 8493-8502 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.
  2. S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).
  3. C. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Solar Energy Materials and Solar Cells 52, 207–221 (1998).
    [Crossref]
  4. R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
    [Crossref]
  5. N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
    [Crossref]
  6. N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
    [Crossref]
  7. B. Jelle, “Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings - measurement and calculation,” Solar Energy Materials and Solar Cells 116, 291–323 (2013).
    [Crossref]
  8. E. Lee and D.L. DiBartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials and Solar Cells 71, 465–491 (2002).
    [Crossref]
  9. D. Roberts, “Preliminary assessment of the energy-saving potential of electrochromic windows in residential buildings,” Technical Report - National Renewable Energy Laboratory (NREL), 2009.
    [Crossref]
  10. M. Schwartz, Smart Materials (CRC, 2008).
    [Crossref]
  11. M. Santamouris, Advances in Passive Cooling (Routledge, 2007).
  12. M. Haldimann, A. Luible, and M. Overend, Structural Use of Glass (International Association for Bridge and Structural Engineering, 2008).
  13. V.K. Thakur and M. Kessler, Liquid Crystalline Polymers: Volume 1 - Structure and Chemistry (Springer, 2015).
    [Crossref]
  14. H. Kwok, S. Naemura, and H.L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday (World Scientific Publishing Company, 2013).
    [Crossref]
  15. C. Lampert, “Large-area smart glass and integrated photovoltaics,” Solar Energy Materials and Solar Cells 76, 489–499 (2003).
    [Crossref]
  16. C. Lampert, “Chromogenic Smart Materials,” Materials Today 7, 28–35 (2004).
    [Crossref]
  17. D. Ginley, H. Hosono, and D. Paine, Handbook of Transparent Conductors (Springer, 2010).
  18. D. Wolfe and K. W. Goossen, “Processing and Optical Characterization of 3D Printed VeroClear” (to be published).
  19. K. Krishnan and S. K. Gurunathan, “Experimental investigation of surface roughness in parts fabricated using poly-jet 3D printing system,” in International Conference & Exhibition on Additive Manufacturing Technologies (2013).
  20. J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

2013 (1)

B. Jelle, “Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings - measurement and calculation,” Solar Energy Materials and Solar Cells 116, 291–323 (2013).
[Crossref]

2012 (1)

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

2010 (1)

R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
[Crossref]

2009 (1)

S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).

2004 (1)

C. Lampert, “Chromogenic Smart Materials,” Materials Today 7, 28–35 (2004).
[Crossref]

2003 (1)

C. Lampert, “Large-area smart glass and integrated photovoltaics,” Solar Energy Materials and Solar Cells 76, 489–499 (2003).
[Crossref]

2002 (1)

E. Lee and D.L. DiBartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials and Solar Cells 71, 465–491 (2002).
[Crossref]

1999 (1)

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

1998 (1)

C. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Solar Energy Materials and Solar Cells 52, 207–221 (1998).
[Crossref]

1997 (1)

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Apte, J.

D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.

Arasteh, D.

D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.

Badding, M.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Baetens, R.

R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
[Crossref]

Brodrick, J.

S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).

Budziak, R.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Cortez, K.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Cumbo, M. J.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

DiBartolomeo, D.L.

E. Lee and D.L. DiBartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials and Solar Cells 71, 465–491 (2002).
[Crossref]

Dieckmann, J.

S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).

Ginley, D.

D. Ginley, H. Hosono, and D. Paine, Handbook of Transparent Conductors (Springer, 2010).

Goossen, K. W.

D. Wolfe and K. W. Goossen, “Processing and Optical Characterization of 3D Printed VeroClear” (to be published).

Gordon, J.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Gurunathan, S. K.

K. Krishnan and S. K. Gurunathan, “Experimental investigation of surface roughness in parts fabricated using poly-jet 3D printing system,” in International Conference & Exhibition on Additive Manufacturing Technologies (2013).

Gustavsen, A.

R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
[Crossref]

Haldimann, M.

M. Haldimann, A. Luible, and M. Overend, Structural Use of Glass (International Association for Bridge and Structural Engineering, 2008).

Hichwa, B. P.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Hosono, H.

D. Ginley, H. Hosono, and D. Paine, Handbook of Transparent Conductors (Springer, 2010).

Jelle, B.

B. Jelle, “Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings - measurement and calculation,” Solar Energy Materials and Solar Cells 116, 291–323 (2013).
[Crossref]

R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
[Crossref]

Kessler, M.

V.K. Thakur and M. Kessler, Liquid Crystalline Polymers: Volume 1 - Structure and Chemistry (Springer, 2015).
[Crossref]

Krishnan, K.

K. Krishnan and S. K. Gurunathan, “Experimental investigation of surface roughness in parts fabricated using poly-jet 3D printing system,” in International Conference & Exhibition on Additive Manufacturing Technologies (2013).

Kwok, H.

H. Kwok, S. Naemura, and H.L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday (World Scientific Publishing Company, 2013).
[Crossref]

Laby, L.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

LaFrance, M.

D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.

Lahaderne, R. B.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Lampert, C.

C. Lampert, “Chromogenic Smart Materials,” Materials Today 7, 28–35 (2004).
[Crossref]

C. Lampert, “Large-area smart glass and integrated photovoltaics,” Solar Energy Materials and Solar Cells 76, 489–499 (2003).
[Crossref]

C. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Solar Energy Materials and Solar Cells 52, 207–221 (1998).
[Crossref]

Lee, E.

E. Lee and D.L. DiBartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials and Solar Cells 71, 465–491 (2002).
[Crossref]

Luible, A.

M. Haldimann, A. Luible, and M. Overend, Structural Use of Glass (International Association for Bridge and Structural Engineering, 2008).

Mathew, H.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Michalski, L.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Naemura, S.

H. Kwok, S. Naemura, and H.L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday (World Scientific Publishing Company, 2013).
[Crossref]

Ngo, T.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

O’Brien, N. A.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Ong, H.L.

H. Kwok, S. Naemura, and H.L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday (World Scientific Publishing Company, 2013).
[Crossref]

Overend, M.

M. Haldimann, A. Luible, and M. Overend, Structural Use of Glass (International Association for Bridge and Structural Engineering, 2008).

Paine, D.

D. Ginley, H. Hosono, and D. Paine, Handbook of Transparent Conductors (Springer, 2010).

Pease, B.

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

Podbelski, L.

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

Raksha, V. P.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Roberts, D.

D. Roberts, “Preliminary assessment of the energy-saving potential of electrochromic windows in residential buildings,” Technical Report - National Renewable Energy Laboratory (NREL), 2009.
[Crossref]

Rudolph, S.

S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).

Santamouris, M.

M. Santamouris, Advances in Passive Cooling (Routledge, 2007).

Sapers, S. P.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Sargent, R. B.

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Sbar, N.

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Schulz, S.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Schwartz, M.

M. Schwartz, Smart Materials (CRC, 2008).
[Crossref]

Selkowitz, S.

D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.

Thakur, V.K.

V.K. Thakur and M. Kessler, Liquid Crystalline Polymers: Volume 1 - Structure and Chemistry (Springer, 2015).
[Crossref]

Urbanik, K.

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

Wolfe, D.

D. Wolfe and K. W. Goossen, “Processing and Optical Characterization of 3D Printed VeroClear” (to be published).

Yang, H.

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

ASHRAE Journal (1)

S. Rudolph, J. Dieckmann, and J. Brodrick, “Emerging Technologies: Technologies for Smart Windows,” ASHRAE Journal 51, 104–106 (2009).

International Journal of Sustainable Built Environment (1)

N. Sbar, L. Podbelski, H. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” International Journal of Sustainable Built Environment 1, 125–139 (2012).
[Crossref]

Materials Today (2)

C. Lampert, “Chromogenic Smart Materials,” Materials Today 7, 28–35 (2004).
[Crossref]

J. Gordon, H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne, and B. P. Hichwa, “Large area electrochromics for architectural applications. Journal of Non-Crystalline Solids,” Materials Today 218, 342–346 (1997).

Solar Energy Materials and Solar Cells (6)

C. Lampert, “Large-area smart glass and integrated photovoltaics,” Solar Energy Materials and Solar Cells 76, 489–499 (2003).
[Crossref]

C. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Solar Energy Materials and Solar Cells 52, 207–221 (1998).
[Crossref]

R. Baetens, B. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Solar Energy Materials and Solar Cells 94, 87–105 (2010).
[Crossref]

N. Sbar, M. Badding, R. Budziak, K. Cortez, L. Laby, L. Michalski, T. Ngo, S. Schulz, and K. Urbanik, “Progress toward durable, cost effective electrochromic window glazings,” Solar Energy Materials and Solar Cells 56, 321–341 (1999).
[Crossref]

B. Jelle, “Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings - measurement and calculation,” Solar Energy Materials and Solar Cells 116, 291–323 (2013).
[Crossref]

E. Lee and D.L. DiBartolomeo, “Application issues for large-area electrochromic windows in commercial buildings,” Solar Energy Materials and Solar Cells 71, 465–491 (2002).
[Crossref]

Other (10)

D. Roberts, “Preliminary assessment of the energy-saving potential of electrochromic windows in residential buildings,” Technical Report - National Renewable Energy Laboratory (NREL), 2009.
[Crossref]

M. Schwartz, Smart Materials (CRC, 2008).
[Crossref]

M. Santamouris, Advances in Passive Cooling (Routledge, 2007).

M. Haldimann, A. Luible, and M. Overend, Structural Use of Glass (International Association for Bridge and Structural Engineering, 2008).

V.K. Thakur and M. Kessler, Liquid Crystalline Polymers: Volume 1 - Structure and Chemistry (Springer, 2015).
[Crossref]

H. Kwok, S. Naemura, and H.L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday (World Scientific Publishing Company, 2013).
[Crossref]

D. Ginley, H. Hosono, and D. Paine, Handbook of Transparent Conductors (Springer, 2010).

D. Wolfe and K. W. Goossen, “Processing and Optical Characterization of 3D Printed VeroClear” (to be published).

K. Krishnan and S. K. Gurunathan, “Experimental investigation of surface roughness in parts fabricated using poly-jet 3D printing system,” in International Conference & Exhibition on Additive Manufacturing Technologies (2013).

D. Arasteh, S. Selkowitz, J. Apte, and M. LaFrance, “Zero Energy Windows,” in Proceedings of the 2006 ACEEE Summer Study on Energy E fficiency in Buildings, ACEEE, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Comparison of leading commercial smart glass technologies, (a) EC light blocking state, (b) EC light transmitting state, (c) SPD light blocking state, (d) SPD light transmitting state, (e) PDLC light scattering state, (f) PDLC light transmitting state.
Fig. 2
Fig. 2 Schematic view of variable transmittance prototype
Fig. 3
Fig. 3 Operating modes of variable transmittance device, (left) air - reflective, (middle) water - diffuse transmittance, (right) index matched - specular transmittance.
Fig. 4
Fig. 4 Spectrophotometer setup/model for theoretical simulations and experimentation, (a) total transmittance measurement, (b) total reflectance measurement.
Fig. 5
Fig. 5 Theoretical and experimental spectral properties of 4.65 mm thick VeroClear slab (a) transmittance, (b) reflectance.
Fig. 6
Fig. 6 Ideal reflectance and transmittance of variable transmittance device prototype.
Fig. 7
Fig. 7 (a) Theoretical model setup of integrating sphere with device angled at 8° and no surface roughness, (b) simulated reflectance captured by the model integrating sphere (pink), exiting the integrating sphere port (cyan), and total reflectance (black).
Fig. 8
Fig. 8 (a) Simulated reflectance captured by the model integrating sphere (pink), exiting the integrating sphere port (cyan), and total reflectance (black), (b) experimental reflectance of variable transmittance device plotted against theoretical maximum and minimum reflectance computed by the software.
Fig. 9
Fig. 9 Experimental reflectance measured at 8° and theoretical reflectance adjusted for normal incidence.
Fig. 10
Fig. 10 (a) Theoretical model setup of integrating sphere with device positioned for transmittance simulation, (b) experimental and theoretical data of normal transmittance for air filled variable transmittance device.
Fig. 11
Fig. 11 Theoretical and experimental ρ and τ plots of 3D printed device prototypes with different fluids, (a) ρ water filled, (b) τ water filled, (c) ρ methyl salicylate filled, (d) τ methyl salicylate filled
Fig. 12
Fig. 12 Experimental setup for cycling.
Fig. 13
Fig. 13 Visible light (400 – 700 nm) transmittance of optofluidic device as a function of cycling.
Fig. 14
Fig. 14 Experimental setup for variable angle transmittance.
Fig. 15
Fig. 15 Experimental and theoretical transmittance with respect to viewing angle, (a) device orientation, (b) integrating sphere illumination rotating about x-axis, (c) integrating sphere illumination rotating about y-axis, (d) transmittance rotating about x-axis, (e) transmittance rotating about y-axis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( θ ) D i f f u s e = P 0 D i f f u s e cos ( θ )
P ( θ ) S p e c u l a r = P 0 S p e c u l a r e [ ( 1 2 ) ( θ σ ) ]

Metrics