Abstract

A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device’s rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF2 / Al2O3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al2O3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

Man Xu, Arthur J. H. Wachters, Joop van Deelen, Maurice C. D. Mourad, and Pascal J. P. Buskens
Opt. Express 22(S2) A425-A437 (2014)

Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells

Chidozie Onwudinanti, Robin Vismara, Olindo Isabella, Louis Grenet, Fabrice Emieux, and Miro Zeman
Opt. Express 24(6) A693-A707 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, “CIGS module manufacturing with high deposition rates and efficiencies,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2775–2777.
  2. H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2767–2770.
  3. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
  5. C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
    [PubMed]
  6. C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
    [PubMed]
  7. J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).
  8. J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).
  9. Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).
  10. E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).
  11. K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).
  12. T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).
  13. B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).
  14. B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).
  15. P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).
  16. Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).
  17. V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).
  18. Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
  19. B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
    [PubMed]
  20. B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).
  21. O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).
  22. M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).
  23. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  26. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).
  27. J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).
  28. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
  29. A. Smets, K. Jäger, O. Isabella, R. van Swaaij, and M. Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems (UIT Cambridge Limited, 2016).
  30. R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104Suppl 4), A1023–A1028 (2014).
    [PubMed]
  31. F. Mollica, J. Goffard, M. Jubault, F. Donsanti, S. Collin, A. Cattoni, L. Lombez, N. Naghavi, R. Edf, I. Umr, and D. Renaissance, “Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In,Ga)Se2 solar cells,” in Photovoltaic Specialists Conference (PVSC) (IEEE, 2016), pp. 6–10.
  32. G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012).
  33. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [PubMed]
  34. O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).
  35. Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).
  36. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).
  37. B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).
  38. G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).
  39. O. Isabella, Light Management in Thin-Film Silicon Solar Cells (TU Delft, Delft University of Technology 2013).

2017 (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

2016 (3)

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[PubMed]

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

2015 (3)

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

2014 (6)

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104Suppl 4), A1023–A1028 (2014).
[PubMed]

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

2013 (7)

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).

2012 (1)

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012).

2011 (2)

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

2010 (1)

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

2009 (1)

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

2008 (1)

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

2003 (2)

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).

1984 (1)

Anikeev, S.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Baik, Y.-J.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Ballif, C.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

Bodegård, M.

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

Borme, J.

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

Bouttemy, M.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Brown, G.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Burghoorn, M.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Buskens, P.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Bykov, E.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Campa, A.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

Casper, P.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Cho, S.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Contreras, M.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Cubero, O.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

Damiano, A.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

De Wolf, S.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

Demontis, V.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Descoeudres, A.

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

Dimmler, B.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Dingemans, G.

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012).

Dodge, M. J.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Edoff, M.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Emieux, F.

Erfurth, F.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Etcheberry, A.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Faifer, V.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Filipic, M.

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

Fjällström, V.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

Flandre, D.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Francis, L. A.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

Frisk, C.

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

Fujiwara, H.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Gao, X.

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

Gerard, I.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Gomard, G.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Grenet, L.

Gunnarsson, R.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

Hara, T.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Hariskos, D.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

Haug, F.-J.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

Helmersson, U.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

Henry, F.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Hetterich, M.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Ho-Baillie, A. W. Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Holman, Z. C.

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

Hultqvist, A.

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

Hünig, R.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Isabella, O.

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[PubMed]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

Jackson, P.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

Jarzembowski, E.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Jehl, Z.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Jeong, J.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Kaufmann, K.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Kessels, W. M. M.

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012).

Kim, W. M.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Kiowski, O.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Kniknie, B.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Kotipalli, R.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Krause, S.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Krc, J.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Lee, T. S.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Lemmer, U.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Levi, D. H.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Lipovsek, B.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Lokar, Z.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Lombez, L.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Lotter, E.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

Lundberg, O.

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

Macleod, A.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

Maekawa, T.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Maiberg, M.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Malmström, J.

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

Melskens, J.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Minoura, S.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Naghavi, N.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Nicoara, N.

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

Niki, S.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Obereigner, F.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Onwudinanti, C.

Orgassa, K.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).

Park, J.-K.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Pettersson, J.

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

Pilch, I.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

Platzer-Björkman, C.

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

Polman, A.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

Poncelet, O.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

Powalla, M.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Pudov, A.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Reitz, C.

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Rostvall, F.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Sadewasser, S.

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

Sago, Y.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Salomé, P.

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

Sanna, C.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Santbergen, R.

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104Suppl 4), A1023–A1028 (2014).
[PubMed]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Scheer, R.

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

Schmid, M.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

Schock, H. W.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).

Seong, T.-Y.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Sever, M.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Smets, A. H. M.

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104Suppl 4), A1023–A1028 (2014).
[PubMed]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

Smole, F.

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

Söderström, T.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

Stolt, L.

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

Sugimoto, H.

H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2767–2770.

Tan, H.

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

Topic, M.

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

Törndahl, T.

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

Tran-Van, P.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

van de Belt, R.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

van Deelen, J.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

van Ee, R.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

van Lare, C.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

Vermang, B.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

Vismara, R.

Voorwinden, G.

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

Vroon, Z.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Wätjen, J. T.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Werner, J. H.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).

Witte, W.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

Wu, J.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

Wuerz, R.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

Xu, M.

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Yin, G.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

Yoon, J.-H.

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Zeman, M.

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[PubMed]

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104Suppl 4), A1023–A1028 (2014).
[PubMed]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

ACS Nano (1)

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[PubMed]

AIP Adv. (1)

M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96(2), 22104 (2010).

IEEE J. Photovoltaics (4)

B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014).

B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014).

Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013).

J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013).

J. Appl. Phys. (4)

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009).

Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013).

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008).

J. Vac. Sci. Technol. A Vacuum, Surfaces, Film (1)

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012).

Light Sci. Appl. (1)

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).

Opt. Express (2)

Phys. Rev. Appl. (1)

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014).

Phys. status solidi (RRL)-Rapid Res. Lett. (2)

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583–586 (2016).

P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016).

Prog. Photovolt. Res. Appl. (4)

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014).
[PubMed]

Sol. Energy (1)

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017).

Sol. Energy Mater. Sol. Cells (2)

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013).

J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011).

Thin Solid Films (4)

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015).

Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011).

E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films 576, 75–80 (2015).

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003).

Other (9)

D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, “CIGS module manufacturing with high deposition rates and efficiencies,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2775–2777.

H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2767–2770.

J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016).

A. Smets, K. Jäger, O. Isabella, R. van Swaaij, and M. Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems (UIT Cambridge Limited, 2016).

F. Mollica, J. Goffard, M. Jubault, F. Donsanti, S. Collin, A. Cattoni, L. Lombez, N. Naghavi, R. Edf, I. Umr, and D. Renaissance, “Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In,Ga)Se2 solar cells,” in Photovoltaic Specialists Conference (PVSC) (IEEE, 2016), pp. 6–10.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

O. Isabella, Light Management in Thin-Film Silicon Solar Cells (TU Delft, Delft University of Technology 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Real (solid) and imaginary (dashed) parts of relative electric permittivity of materials used for the calibrated model as a function of wavelength (the first four optical properties are obtained from [21] and Mo from [5]).
Fig. 2
Fig. 2 a) Software model. Thicknesses of layers from top to bottom are (in nm): 250, 60, 70, 1600 and 320. b) Simulation results are compared to the measured EQE and 1-R (dashed and solid black curves, respectively). Colored areas indicate absorption in different layers of the structure.
Fig. 3
Fig. 3 a) Real part of relative electric permittivity of Mo (dashed) and CIGS (solid), and b) SPP dispersion curve at the interface between Mo and CIGS (blue) half spaces compared to CIGS light line (dashed black) as a function of wavelength (i.e. photon energy).
Fig. 4
Fig. 4 Modified model with the synthetic dielectric spacer layer. Thicknesses of different layers (in nm) from top to bottom are as follows: 250, 60, 70, 1600, d and 320. The thickness d of the spacer layer was varied between 20 nm and 170 nm.
Fig. 5
Fig. 5 Contour plots of the synthetic dielectric spacer optimization: a) integrated Mo absorption loss (JMo), and b) implied photo-current density in CIGS layer (Jph) versus spacer thickness and electric permittivity for the wavelength range 900-1200 nm.
Fig. 6
Fig. 6 Integrated absorption (or photocurrent density) in different layers of CIGS solar cell as a function of spacer thickness d in the wavelength range between 900 and 1200 nm when Al2O3 is used as the spacer.
Fig. 7
Fig. 7 Integrated absorption (or photocurrent density) in different layers of CIGS solar cell as a function of spacer thickness d in the wavelength range between 900 and 1200 nm when MgF2 is used as the spacer.
Fig. 8
Fig. 8 The schematic of the two-layer dielectric spacer / passivating stack consisting of MgF2 (140 nm) and Al2O3 (10 nm) placed between Mo back contact and CIGS absorber.
Fig. 9
Fig. 9 a) The absorption in 1600-nm thick CIGS (blue) and Mo (red) and 1-R (black) for the reference cell (dashed) and the cell with two-layer spacer (solid), and b) the integrated absorption in different layers of CIGS solar cell for the wavelength range between 300 and 1200 nm.
Fig. 10
Fig. 10 From top to bottom, magnitude of the electric field | E | along the central line of the solar cell at λ=1020nm as a function of the distance from the back side of the cell for TM illumination: a) comparison between the reference cell (red) and the cell with MgF2 / Al2O3 spacer (blue), b) a closer look at the area shown in the dashed rectangle for reference cell and c) the same but for the cell with MgF2 / Al2O3 spacer. The background colors indicate different layers: Mo (greenish-grey), MgF2 (pink), Al2O3 (red) and CIGS (brown).
Fig. 11
Fig. 11 a) Dual-layer spacer / passivator consisting of MgF2 (100 nm) and Al2O3 (10 nm), including the point contact scheme; b) implied photocurrent density and integrated Mo absorption and reflection loss for 700 < λ < 1150 nm as a function of Duty cycle (Dc) for unit cell lengths of two, four and six times larger than the correlation length of CIGS surface texture.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A i ( λ )= 1 2 ε 0 Im( ε i ( λ ) )ω V i | E ( λ ) | 2 dV
β( λ )= k 0 ε d ε m ε d + ε m
J i =q A i ( λ )Φ( λ )dλ

Metrics