Abstract

We propose a scheme for near-field thermophotovoltaic (TPV) energy conversion, where thermal emission from an emitter is extracted by an intermediate transparent substrate attached to the top of a photovoltaic (PV) cell. The addition of an intermediate transparent substrate suppresses the unwanted heat transfer from the emitter to the PV cell due to the surface modes on the PV cell while maintaining the enhancement in the interband absorption. We confirm that our scheme is applicable for near-field TPV systems using a silicon (Si) or tungsten (W) emitter. As a specific example, we designed a near-field TPV system composed of a one-dimensional Si photonic crystal thermal emitter, an InGaAs PV cell, and an intermediate Si substrate, and displayed that our scheme could realize both high power density (>5 × 104 W/m2) and high power conversion efficiency (>40%) at a 50-nm gap between the emitter and the intermediate substrate.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

David N. Woolf, Emil A. Kadlec, Don Bethke, Albert D. Grine, John J. Nogan, Jeffrey G. Cederberg, D. Bruce Burckel, Ting Shan Luk, Eric A. Shaner, and Joel M. Hensley
Optica 5(2) 213-218 (2018)

Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap

Seokmin Jin, Mikyung Lim, Seung S. Lee, and Bong Jae Lee
Opt. Express 24(6) A635-A649 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
    [Crossref]
  2. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
    [Crossref]
  3. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  4. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
    [Crossref]
  5. A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
    [Crossref]
  6. T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
    [Crossref] [PubMed]
  7. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
    [Crossref]
  8. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
    [Crossref]
  9. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
    [Crossref]
  10. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
    [Crossref]
  11. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
    [Crossref] [PubMed]
  12. A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
    [Crossref] [PubMed]
  13. R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
    [Crossref] [PubMed]
  14. K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
    [Crossref]
  15. M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
    [Crossref] [PubMed]
  16. T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
    [Crossref]
  17. G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
    [Crossref]
  18. P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
    [Crossref]
  19. C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9), 1703–1718 (2006).
    [Crossref]
  20. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).
    [Crossref] [PubMed]
  21. Y. S. Touloukian, Thermophysical Properties of Matter7 (IFI/PLENUM, New York–Washington, 1970).
  22. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  23. R. Trommer and L. Hoffmann, “Large-hole diffusion length and lifetime in InGaAs/lnP double-heterostructure photodiodes,” Electron. Lett. 22(7), 360–362 (1986).
    [Crossref]
  24. D. M. Wilt, N. S. Fatemi, P. P. Jenkins, R. W. Hoffmn, G. A. Landis, and R. K. Jain, “Monolithically interconnected InGaAs TPV module development,” Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE, 43–48 (1996).
  25. J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
    [Crossref]
  26. M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
    [Crossref]
  27. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
    [Crossref]
  28. D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
    [Crossref]
  29. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe (John Wiley & Sons, Inc., New York, 2001).
  30. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  31. L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
    [Crossref]
  32. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
    [Crossref]
  33. A. Karalis and J. D. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).
    [Crossref]
  34. A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
    [Crossref]
  35. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref] [PubMed]

2017 (2)

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

2016 (4)

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

2015 (4)

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

A. Karalis and J. D. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

2014 (2)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

2012 (2)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

2009 (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

2008 (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

2007 (1)

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

2006 (2)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9), 1703–1718 (2006).
[Crossref]

2005 (2)

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
[Crossref]

2004 (1)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

2003 (1)

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

2002 (1)

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

1993 (1)

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

1989 (1)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

1988 (1)

1986 (1)

R. Trommer and L. Hoffmann, “Large-hole diffusion length and lifetime in InGaAs/lnP double-heterostructure photodiodes,” Electron. Lett. 22(7), 360–362 (1986).
[Crossref]

1983 (1)

1982 (1)

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

1979 (1)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

Alexander, R. W.

Asano, T.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

Atwater, H. A.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Bernardi, M. P.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

Bhatt, G. R.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Blandre, E.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Bright, T. J.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Celanovic, I.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chapuis, P.-O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Chen, K.

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
[Crossref]

Cohen, G. M.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

De Zoysa, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Dey, C. J.

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
[Crossref]

Dupré, O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Fan, S.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
[Crossref]

Francoeur, M.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9), 1703–1718 (2006).
[Crossref]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Greffet, J.-J.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Hashimoto, K.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Ho, K.-M.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Hoffmann, L.

R. Trommer and L. Hoffmann, “Large-hole diffusion length and lifetime in InGaAs/lnP double-heterostructure photodiodes,” Electron. Lett. 22(7), 360–362 (1986).
[Crossref]

Holden, T. M.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Ilic, O.

Inoue, T.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

Jablan, M.

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Joannopoulos, J. D.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

A. Karalis and J. D. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Kahn, M.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Karalis, A.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

A. Karalis and J. D. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).
[Crossref]

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Kohiyama, A.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Kronik, L.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Ladous, C.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, Z.-Y.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Lin, L.-L.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Lipson, M.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

Lockwood, D. J.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Long, L. L.

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Mills, D. R.

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
[Crossref]

Munoz, M.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Newman, F. D.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Newquist, L. A.

Noda, S.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

Ordal, M. A.

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Pinnington, T.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Pollak, F. H.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Querry, M. R.

Ritter, D.

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Rowell, N. L.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Royne, A.

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
[Crossref]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

Santhanam, P.

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
[Crossref]

Shibahara, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Shimizu, M.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Soljacic, M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

St-Gelais, R.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

Suemitsu, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Swanson, R. M.

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Tanabe, K.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Timans, P. J.

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

Trommer, R.

R. Trommer and L. Hoffmann, “Large-hole diffusion length and lifetime in InGaAs/lnP double-heterostructure photodiodes,” Electron. Lett. 22(7), 360–362 (1986).
[Crossref]

Tsutsumi, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Vaillon, R.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, L. P.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

Ward, C. A.

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Yu, G.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Yugami, H.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

Zahler, J. M.

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Zhang, Z. M.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9), 1703–1718 (2006).
[Crossref]

Zhu, L.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

Zoysa, M. D.

ACS Nano (1)

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS Nano 11(3), 3001–3009 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Express (1)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Appl. Phys. Lett. (5)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107(9), 091106 (2015).
[Crossref]

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

A. Karalis and J. D. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).
[Crossref]

J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett. 91(1), 012108 (2007).
[Crossref]

Electron. Lett. (1)

R. Trommer and L. Hoffmann, “Large-hole diffusion length and lifetime in InGaAs/lnP double-heterostructure photodiodes,” Electron. Lett. 22(7), 360–362 (1986).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Int. J. Heat Mass Transfer (1)

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9), 1703–1718 (2006).
[Crossref]

J. Appl. Phys. (5)

M. Munoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

J. Heat Transfer (1)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally-based spectral shaping,” Nat. Energy 1(6), 16068–16076 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Optica (1)

Phys. Rev. B (1)

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Proc. IEEE (1)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005).
[Crossref]

Solid State Commun. (1)

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Other (3)

M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe (John Wiley & Sons, Inc., New York, 2001).

Y. S. Touloukian, Thermophysical Properties of Matter7 (IFI/PLENUM, New York–Washington, 1970).

D. M. Wilt, N. S. Fatemi, P. P. Jenkins, R. W. Hoffmn, G. A. Landis, and R. K. Jain, “Monolithically interconnected InGaAs TPV module development,” Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE, 43–48 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Near-field TPV system, which consists of a thermal emitter, an intermediate Si substrate, and an InGaAs PV cell. By inserting the intermediate substrate between the emitter and the PV cell, we can suppress the long-wavelength heat transfer caused by the surface modes of the PV cell while maintaining the near-field enhancement in thermal radiation transfer in the near-infrared range. (b)(c) Absorption coefficient spectra of undoped Si in the near-infrared and far-infrared at various temperatures. (d) Real part of the permittivity of undoped Si and the heavily doped contact layer (n-InP).
Fig. 2
Fig. 2 (a)(b) Thermal radiation spectra from the Si planar emitter to each layer of the PV cell without the intermediate Si substrate (t = 0 µm) at a gap of 100 µm (a) and 0.01 µm (b). In this case, the interband absorption in the InGaAs pn junction (red line, λ<λg) as well as the far-infrared absorption in the n-InP window layer (blue line, λ>20 µm) exceed the far-field blackbody limit (black line). (c)(d) Thermal radiation spectra from the planar emitter to each layer of the PV cell with the intermediate Si substrate (t = 10 µm) at a gap of 100 µm (c) and 0.01 µm (d). Here, the selective enhancement of the interband absorption in the InGaAs pn junction is achieved.
Fig. 3
Fig. 3 (a)(b) Calculated exchange function of the thermal radiation transfer between the Si emitter and the PV cells at the gap d = 10 nm as a function of an in-plane wavenumber. (a) without an intermediate substrate, (b) with an intermediate substrate (t = 10 µm).
Fig. 4
Fig. 4 (a)(b) Interband absorption power in InGaAs (red line) and the other losses, which cannot be converted to electrical power, with and without the intermediate substrate. Total emission flux from the emitter is shown in black. (c) Ratio of the interband absorption power in InGaAs to the total radiation power (interband absorption ratio) with and without the intermediate substrate. (d) Interband absorption ratio at d = 0.05 µm for the planar emitter and the 1D PC emitter (a = 0.4 µm, w = 0.28 µm, h = 1.8 µm) as a function of the thickness of the intermediate substrate (t).
Fig. 5
Fig. 5 (a)(b) Thermal radiation spectra from a 2-µm-thick W planar emitter to each layer of the PV cell (a) without and (b) with an intermediate Si substrate (t = 10 µm) at a gap of 0.01 µm. (c) Interband absorption power in the InGaAs PV cell with an intermediate substrate (t = 10 µm) from the 2-µm-thick Si emitter and W emitter. (d) Ratio of the interband absorption power to the total emission flux from the 2-µm-thick Si emitter and W emitter. It should be noted the increase of the mid-infrared and far-infrared emissivity from W at high temperatures [21,22] was not taken into account in this calculation.
Fig. 6
Fig. 6 (a) Electric power density of the proposed near-field TPV system with the Si PhC emitter (a = 0.4 µm, w = 0.28 µm, h = 1.8 µm) and the intermediate Si substrate (t = 2 µm) as a function of the gap. (b) Power conversion efficiency of the near-field TPV system as a function of the gap.
Fig. 7
Fig. 7 (a)(b) Thermal radiation spectra from the Si planar emitter to each layer of the PV cell with an Au reflective mirror (a) without and (b) with the intermediate Si substrate (t = 10 µm) at a gap of 0.01 µm. (c) Interband absorption ratio as a function of the gap length. (d) Interband absorption power in the InGaAs layers as a function of the gap length.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

j m (r,ω) j m' * (r',ω') = 4ω ε 0 Im(ε) π ω exp( ω/kT )1 δ mm' δ(rr')δ(ωω'),
E x (r)=exp( iβρ )× n E x,n (z)exp( i G n ρ ) E y (r)=exp( iβρ )× n E y,n (z)exp( i G n ρ ) H x (r)=exp( iβρ )× n H x,n (z)exp( i G n ρ ) , H y (r)=exp( iβρ )× n H y,n (z)exp( i G n ρ ) j m (r)=exp( iβρ )× n j m,n (z)exp( i G n ρ )
j m,n (z) j m',n' * (z') = 1 16 π 4 unitcell dρ unitcell dρ' j m (r) j m' * (r') exp[ i( G n' ρ' G n ρ ) ] = ω ε 0 4 π 5 ω exp( ω/kT )1 δ mm' δ(ωω')δ(zz') . × unitcell dρ Im(ε)exp[ i( G n' G n )ρ ]
S(ω)= 1stBrillouin dβ 1 2 Re[ n=1 N ( E 2x,n H 2y,n E 2y,n H 2x,n ) ].
J= J sc J dark (V).
J sc =e λ< λ g P InGaAs,interband (λ)λ hc d λ.
J dark (V)=e λ< λ g [ ε ge (λ)R(λ)+ ε gb (λ) 4πc λ 4 ]( Θ V, T cell (λ) Θ 0, T cell (λ) )dλ .
P InGaAs,interband (λ)= hc λ ε ge (λ)R(λ)[ Θ 0, T emitter (λ) Θ 0, T cell (λ) ].
E x (r)=exp( iβρ )× n E x,n (z)exp( i G n ρ ) E y (r)=exp( iβρ )× n E y,n (z)exp( i G n ρ ) , H x (r)=exp( iβρ )× n H x,n (z)exp( i G n ρ ) H y (r)=exp( iβρ )× n H y,n (z)exp( i G n ρ )
E(z)= ( E x,1 , E y,1 , E x,2 , E y,2 ,, E x,N , E y,N ) T , H(z)= ( H x,1 , H y,1 , H x,2 , H y,2 ,, H x,N , H y,N ) T
z E=iT H 1 , z H=iT Ε 2 ,
2 z 2 E=T T 1 Ε 2 .
T i,j 1 = 1 ω ε 0 ( k x,i ε ij 1 k y,j k x,i ε ij 1 k x,j + k 0 2 δ ij k y,i ε ij 1 k y,j k 0 2 δ ij k y,i ε ij 1 k x,j ), T i,j 2 = 1 ω μ 0 ( k x,i δ ij k y,j k x,i δ ij k x,j k 0 2 ε ij k y,i δ ij k y,j + k 0 2 ε ij k y,i δ ij k x,j )
ε ij = unitcell ε(ρ)exp( i( G i G j )ρ )dρ, ε ij 1 = unitcell 1 ε(ρ) exp( i( G i G j )ρ )dρ.
E 0 (z)= E 0 + (z)+ E 0 (z) E 0 + (z)= i [ C i + exp( i γ i z ) ] u i , E 0 (z)= i [ C i exp( i γ i z ) ] u i ,
j m (r,ω) j m' * (r',ω') = 4ω ε 0 Im(ε) π ω exp( ω/kT )1 δ mm' δ(rr')δ(ωω').
j m,n (z) j m',n' * (z') = 1 16 π 4 unitcell dρ unitcell dρ' j m (r) j m' * (r') exp[ i( G n' ρ' G n ρ ) ] = ω ε 0 4 π 5 ω exp( ω/kT )1 δ mm' δ(ωω')δ(zz') . × unitcell dρ Im(ε)exp[ i( G n' G n )ρ ]
z E=iT H 1 + J 1 , z H=iT Ε 2 + J 2 ,
2 z 2 E=T T 1 Ε 2 +i T 1 J 2 + z J 1 ,
J 1 = 1 ω ε 0 ( k x,1 ( ε 1 j z ) 1 , k y,1 ( ε 1 j z ) 1 , k x,2 ( ε 1 j z ) 2 , k y,2 ( ε 1 j z ) 2 , ) T J 2 = ( j y,1 , j x,1 , j y,2 , j x,2 , ) T . ( ε 1 j z ) i = j=1 N ε ij 1 j z,j
2 z 2 S a 1 E= S a 1 T T 1 S 2 a ( S a 1 E)+ z S a 1 J 1 + S a 1 iT J 1 2 .
2 z 2 f i (z)= γ i 2 f i (z)+ z p i (z)+i q i (z)( i=1,2,,2N ),
f i (z)={ π γ i [ γ i P i ( γ i )+ Q i ( γ i ) ]exp(i γ i z)(z>0) π γ i [ γ i P i ( γ i )+ Q i ( γ i ) ]exp(i γ i z)(z<0) ,
P i ( γ i )= 1 2π p i (z)exp(i γ i z)dz , Q i ( γ i )= 1 2π q i (z)exp(i γ i z)dz .
C i + = π γ i [ γ i P i ( γ i )+ Q i ( γ i ) ], C i = π γ i [ γ i P i ( γ i )+ Q i ( γ i ) ].
E 2 = i [ M E + C i + u i + M E C i u i ] H 2 = i [ M H + C i + u i + M H C i u i ] .
S(ω,T)= 1stBrillouin dβ 1 2 Re[ n=1 N ( E 2x,n H 2y,n E 2y,n H 2x,n ) ].
Z(ω,β)= 1 2 Re[ n=1 N ( E 2x,n H 2y,n E 2y,n H 2x,n ) ]/ ( 1 4 π 3 ω exp( ω/kT )1 ) ,

Metrics