Abstract

We study the light-trapping properties of surface textures generated by a bottom-up approach, which utilizes monolayers of densely deposited nanospheres as a template. We demonstrate that just allowing placement disorder in monolayers from identical nanospheres can already lead to a significant boost in light-trapping capabilities. Further absorption enhancement can be obtained by involving an additional nanosphere size species. We show that the Power Spectral Density provides limited correspondence to the diffraction pattern and in turn to the short-circuit current density enhancement for large texture modulations. However, in predicting the optimal nanosphere size distribution, we demonstrate that full-wave simulations of just a c-Si semi-infinite halfspace at a single wavelength in the range where light trapping is of main importance is sufficient to provide an excellent estimate. The envisioned bottom-up approach can thus reliably provide good light-trapping surface textures even with simple nanosphere monolayer templates defined by a limited number of control parameters: two nanosphere radii and their occurrence probability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in thin-film solar cells with randomly rough and hybrid textures

Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 21(S5) A808-A820 (2013)

Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells

Ting-Gang Chen, Peichen Yu, Yu-Lin Tsai, Chang-Hong Shen, Jia-Min Shieh, Min-An Tsai, and Hao-Chung Kuo
Opt. Express 20(S3) A412-A417 (2012)

Optimizing two-level hierarchical particles for thin-film solar cells

Shiwei Zhou, Xiaodong Hunang, Qing Li, and Yi Min Xie
Opt. Express 21(S2) A285-A294 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.
  2. T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
    [Crossref]
  3. H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
    [Crossref]
  4. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
    [Crossref]
  5. C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
    [Crossref]
  6. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
    [Crossref]
  7. A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
    [Crossref]
  8. C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
    [Crossref]
  9. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
    [Crossref] [PubMed]
  10. S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
    [Crossref]
  11. M.-C. van Lare and A. Polman, “Optimized scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns,” ACS Photonics 2, 822–831 (2015).
    [Crossref]
  12. C. Trompoukis, I. Massiot, V. Depauw, O. E. Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24, A191–A201 (2016).
    [Crossref] [PubMed]
  13. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
    [Crossref]
  14. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
    [Crossref]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [Crossref]
  16. C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
    [Crossref]
  17. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
    [Crossref]
  18. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
    [Crossref] [PubMed]
  19. M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
    [Crossref]
  20. P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
    [Crossref]
  21. U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
    [Crossref]
  22. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
    [Crossref]
  23. S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
    [Crossref] [PubMed]
  24. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
    [Crossref]
  25. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
    [Crossref]
  26. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  27. F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
    [Crossref] [PubMed]
  28. X. Guo, D. Wang, B. Liu, S. Li, and X. Sheng, “Enhanced light absorption in thin film silicon solar cells with Fourier-series based periodic nanostructures,” Opt. Express 24, A408–A413 (2016).
    [Crossref] [PubMed]
  29. R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
    [Crossref]
  30. X. Meng, V. Depauw, G. Gomard, O. E. Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
    [Crossref] [PubMed]
  31. S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
    [Crossref]
  32. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
    [Crossref] [PubMed]
  33. T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
    [Crossref]
  34. T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci. 253, 6196–6202 (2007).
    [Crossref]
  35. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
    [Crossref] [PubMed]
  36. N. Sahraei, K. Forberich, S. Venkataraj, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Express 22, A53–A67 (2014).
    [Crossref] [PubMed]
  37. S. J. Fonash, Introduction to Light Trapping in Solar Cell and Photo-detector Devices (Academic Press, 2015), 1st ed.
  38. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111–131 (2010).
    [Crossref]
  39. S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
    [Crossref]
  40. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]
  41. M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photov. Res. Appl. 3189–192 (1995).
    [Crossref]
  42. Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  44. K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
    [Crossref]
  45. S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
    [Crossref] [PubMed]
  46. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
    [Crossref]
  47. ASTM, “Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface,” (2012). West Conshohocken (PA): American Society for Testing and Materials. Available from https://www.astm.org .

2017 (1)

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

2016 (3)

2015 (4)

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

M.-C. van Lare and A. Polman, “Optimized scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns,” ACS Photonics 2, 822–831 (2015).
[Crossref]

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

2014 (6)

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

N. Sahraei, K. Forberich, S. Venkataraj, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Express 22, A53–A67 (2014).
[Crossref] [PubMed]

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

2013 (5)

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref] [PubMed]

2012 (9)

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[Crossref] [PubMed]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[Crossref]

2008 (4)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[Crossref]

2007 (4)

T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci. 253, 6196–6202 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

2001 (1)

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
[Crossref]

1995 (1)

M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photov. Res. Appl. 3189–192 (1995).
[Crossref]

1994 (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Abass, A.

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

Aberle, A. G.

Alexander, D.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Alu, A.

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

Andreani, L. C.

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

Arnold, M.

S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.

Ballif, C.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

Battaglia, C.

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Beckers, T.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

Benick, J.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Bischoff, T.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

Bittkau, K.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

Bläsi, B.

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Bozzola, A.

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

Burgelman, M.

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

Burger, S.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

Burresi, M.

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Carius, R.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

Chang, H.-C.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Daif, O. E.

Depauw, V.

C. Trompoukis, I. Massiot, V. Depauw, O. E. Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24, A191–A201 (2016).
[Crossref] [PubMed]

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[Crossref] [PubMed]

Descoeudres, A.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[Crossref]

Dmitriev, A.

C. Trompoukis, I. Massiot, V. Depauw, O. E. Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24, A191–A201 (2016).
[Crossref] [PubMed]

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

Dorpe, P. V.

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

Dross, F.

Drouard, E.

Eisele, C.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
[Crossref]

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Fahr, S.

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[Crossref]

Fan, Z.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Fave, A.

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Filipic, M.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Fonash, S. J.

S. J. Fonash, Introduction to Light Trapping in Solar Cell and Photo-detector Devices (Academic Press, 2015), 1st ed.

Forberich, K.

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

George, S. M.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]

Gomard, G.

Gordon, I.

Green, M.

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photov. Res. Appl. 3189–192 (1995).
[Crossref]

Green, M. A.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Guo, X.

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

He, J.-H.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

Hermle, M.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Holman, Z.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Isabella, O.

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

Ishibashi, K.

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

Itoh, T.

T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci. 253, 6196–6202 (2007).
[Crossref]

Jäger, K.

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

Jain, S.

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

Jamois, C.

Janz, S.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jovanov, V.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Kawamukai, E.

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

Keevers, M.

M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photov. Res. Appl. 3189–192 (1995).
[Crossref]

Kirchartz, T.

Knipp, D.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[Crossref]

Kowalczewski, P.

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

Krauss, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

Lai, K.-Y.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Le, K. Q.

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

Lederer, F.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[Crossref]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

Lee, K.

Leung, S.-F.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

Li, S.

Lien, D.-H.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Lien, M.-L.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Lin, C.-A.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Lin, Q.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Linssen, D.

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

Liscidini, M.

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

Liu, B.

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

Maes, B.

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

Massiot, I.

Meier, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Meng, X.

Merdzhanova, T.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Mertens, R.

Michaelis, D.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Milenkovic, N.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Miljkovic, V. D.

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

Nebel, C.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
[Crossref]

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Okamoto, T.

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

Orlov, S.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Paetzold, U. W.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Pertsch, T.

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

Peschel, U.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Peters, M.

Pillai, S.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

Ploss, D.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Pocza, D.

S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.

Polman, A.

M.-C. van Lare and A. Polman, “Optimized scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns,” ACS Photonics 2, 822–831 (2015).
[Crossref]

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

Poortmans, J.

Pratesi, F.

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Rachow, T.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Rau, U.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Reber, S.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.

Riboli, F.

Rockstuhl, C.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[Crossref]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

Romanov, S. G.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Sahraei, N.

Schillinger, N.

S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

Seassal, C.

Sheng, X.

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Shinotsuka, K.

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

Smeets, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Smirnov, V.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Smole, F.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Söderström, T.

Steinhauser, B.

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

Stutzmann, M.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
[Crossref]

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Topic, M.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Trompoukis, C.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

van Lare, M.-C.

M.-C. van Lare and A. Polman, “Optimized scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns,” ACS Photonics 2, 822–831 (2015).
[Crossref]

Venkataraj, S.

Vogel, N.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Vynck, K.

Waechter, C.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

Wang, D.

Wang, H.-P.

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Weiss, C. K.

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Wiersma, D. S.

Wiesendanger, S.

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

Wolf, S. D.

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

Yamauchi, N.

T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci. 253, 6196–6202 (2007).
[Crossref]

Yu, R.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Zeman, M.

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

Zilk, M.

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

M.-C. van Lare and A. Polman, “Optimized scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns,” ACS Photonics 2, 822–831 (2015).
[Crossref]

Appl. Phys. Express (1)

T. Okamoto, K. Shinotsuka, E. Kawamukai, and K. Ishibashi, “Self-assembly method for controlling spatial frequency response of plasmonic back reflectors in organic thin-film solar cells,” Appl. Phys. Express 10, 012301 (2017).
[Crossref]

Appl. Phys. Lett. (7)

S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Appl. Phys. Lett. 103, 131115 (2013).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104, 131102 (2014).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[Crossref]

C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93, 061105 (2008).
[Crossref]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[Crossref]

S. Wiesendanger, T. Bischoff, V. Jovanov, D. Knipp, S. Burger, F. Lederer, and C. Rockstuhl, “Effects of film growth modes on light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 104, 231103 (2014).
[Crossref]

Appl. Surf. Sci. (1)

T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci. 253, 6196–6202 (2007).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]

Energy Procedia (1)

T. Rachow, N. Milenkovic, B. Steinhauser, J. Benick, S. Janz, M. Hermle, and S. Reber, “Solar cells with epitaxial or gas phase diffused emitters above 21% efficiency,” Energy Procedia 77, 540–545 (2015).
[Crossref]

J. Appl. Phys. (7)

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89, 7722–7726 (2001).
[Crossref]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[Crossref]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

P. Kowalczewski, A. Bozzola, M. Liscidini, and L. C. Andreani, “Light trapping and electrical transport in thin-film solar cells with randomly rough textures,” J. Appl. Phys. 115, 194504 (2014).
[Crossref]

Z. Holman, M. Filipic, A. Descoeudres, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113, 013107 (2013).
[Crossref]

J. Comput. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

J. Mater. Chem. C (1)

H.-P. Wang, D.-H. Lien, M.-L. Lien, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2, 3144–3171 (2014).
[Crossref]

Nano Energy (1)

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[Crossref]

Opt. Expr. (1)

K. Jäger, D. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Expr. 23, A1060–A1071 (2015).
[Crossref]

Opt. Express (9)

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

C. Trompoukis, I. Massiot, V. Depauw, O. E. Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24, A191–A201 (2016).
[Crossref] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref] [PubMed]

X. Guo, D. Wang, B. Liu, S. Li, and X. Sheng, “Enhanced light absorption in thin film silicon solar cells with Fourier-series based periodic nanostructures,” Opt. Express 24, A408–A413 (2016).
[Crossref] [PubMed]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[Crossref] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. E. Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A342 (2010).
[Crossref] [PubMed]

N. Sahraei, K. Forberich, S. Venkataraj, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Express 22, A53–A67 (2014).
[Crossref] [PubMed]

Phys. Rev. B (3)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404(R) (2012).
[Crossref]

A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Stat. Sol. (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. 244, 3419–3434 (2007).
[Crossref]

Phys. Stat. Sol. (a) (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Stat. Sol. (a) 205, 2777–2795 (2008).
[Crossref]

Prog. Photov. Res. Appl. (2)

S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, “Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector,” Prog. Photov. Res. Appl. 23, 1144–1156 (2015).
[Crossref]

M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photov. Res. Appl. 3189–192 (1995).
[Crossref]

Sci. Rep. (1)

S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, “Engineered disorder and light propagation in a planar photonic glass,” Sci. Rep. 6, 27264 (2016).
[Crossref] [PubMed]

Other (3)

ASTM, “Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface,” (2012). West Conshohocken (PA): American Society for Testing and Materials. Available from https://www.astm.org .

S. Reber, M. Arnold, D. Pocza, and N. Schillinger, “ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy,” Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009). Hamburg, Germany.

S. J. Fonash, Introduction to Light Trapping in Solar Cell and Photo-detector Devices (Academic Press, 2015), 1st ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) A two-dimensional slice through the three-dimensional geometry of the considered thin-film solar cell used for full-wave FEM simulations with normal incident plane waves. Above the silver rough back-reflector whose height profile we are optimizing in this work, 1 μm of c-Si is considered. To reduce reflections at the front side, a 50 nm Indium tin oxide (ITO) anti-reflection layer is deposited on top of the silicon. The geometry in the dashed box was used for full-wave diffraction simulations, i.e. when calculating the angular spectrum. The entire three-dimensional geometry was considered when analyzing the short-circuit current density. b) To judge the quality of a rough surface, the Fourier spectrum was divided into three regions: A, for angles smaller than the angle of total internal reflection (TIR) at a silicon-air interface; B, for angles larger than the TIR angle, considering only propagating modes; C, evanescent wave vector components. We aim to tailor the diffraction spectrum to have its major contributions in region B.
Fig. 2
Fig. 2 a) Example monolayer consisting of nanospheres with only one radius (170 nm) and an isotropic coating layer with thickness 100 nm. Parts of the monolayer form a hexagonal pattern, whereas others are disordered. b) Example monolayer with 60 % of nanospheres with radius 170 nm and 40 % nanospheres with radius 120 nm. Again, a 100 nm thick isotropic layer has beed added. The small nanospheres lead to the vanishing of any remaining order of the bigger nanospheres.
Fig. 3
Fig. 3 Procedure to generate the rough surface template. Displayed is a two-dimensional cross-section of the three-dimensional height profile. a) Nanospheres are placed in a monolayer with the restriction that every nanosphere touches at least one other nanosphere. Overlapping nanospheres are not allowed. b) To mimic the isotropic coating by atomic layer deposition, the nanospheres are radially enlarged. c) The last step is to homogenize the resulting structure. The height profile is then the maximal height resulting from the enlarged nanospheres.
Fig. 4
Fig. 4 a) Diffraction pattern of an ideal hexagonal monolayer of single-sized nanospheres with radius of 170 nm. The blue dots indicate the available discrete diffraction channels. b) Average root mean square (RMS) roughness of a surface consisting of nanospheres with 170 nm radius and an increasing portion of nanospheres with 120 nm radius. The graph shows the average of 20 generated height profiles for each portion of larger and smaller nanospheres in steps of 2 %. By increasing the portion of the small nanospheres, the RMS roughness first increases up to a portion of approx. 70 % of nanospheres, before it quickly drops; this is due to smearing out of the surface features accompanying the diminishing influence of the bigger nanospheres.
Fig. 5
Fig. 5 Plots of the PSD (5(a)–5(c)) and the diffracted angular spectra (5(d)–5(f)) at a wavelength of 700 nm for three different portions of small nanospheres. The white dashed rings mark the annulus sketched in Fig. 1(b) with optimized inner and outer radius. Figures 5(a)–5(c) show PSD plots of disordered monolayers where the radius of the main nanosphere species is rmain = 170 nm and the perturbing nanospheres have rpert = 120 nm, and Figs. 5(d)–5(f) show diffraction plots of such monolayer configurations, respectively. For the PSD plots, the average height of the height profiles was set to zero to remove the zeroth order component, and in the diffraction plots, the zeroth order is not shown. Percentages of the perturbing nanospheres are: a, d: 0%; b, e: 10%, and c, f: 40%. For the small perturbations of 0% and 10%, the PSD and diffraction components are mainly located centrally in the previously defined annulus region, whereas for higher perturbations, the PSD pattern transforms into a disk.
Fig. 6
Fig. 6 Comparison between the contributions of the PSD and the diffraction components, both summed up in the annulus region B indicated in Fig. 1(b). a) By increasing the portion of the small nanospheres, the sum of the PSD components in the annulus (η) doubles its value up to around 60 % of small nanospheres due to the introduction of more Fourier components by the perturbing nanospheres, and then decreases rapidly as the smaller nanospheres generate a less rough surface morphology. b) The diffraction efficiency in the annulus (δ, red squares) shows the same tendency, but with a less pronounced peak. The short-circuit current density jsc (blue dots) shows a similar behavior with a peak at around 50 %. The increase of jsc from 0 % to 50 % amounts to 1.1 mA cm 2. Each datapoint of η is the average of three simulations, and each jsc datapoint is the average of at least two simulations. The error bars indicate the uncertainty of the averages.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PSD ( G ) = 1 L x L y | m n h ( x m , y n ) e i ( G x m x m + G y n y n ) Δ L 2 | 2 .
η = G x m , G y n , k TIR < G < k inc PSD ( G x m , G y n ) ,
δ = k x m , k y n , k TIR < G < k inc | E ref ( k x m , k y n ) | 2 k z k inc , .
A ( λ ) = V S ( λ ) d V .
j sc = e 300 nm 1100 nm QE A ( λ ) ϕ ( λ ) d λ .

Metrics