Abstract

We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Approach for identifying optically shallow pixels when processing ocean-color imagery

Lachlan I. W. McKinna and P. Jeremy Werdell
Opt. Express 26(22) A915-A928 (2018)

Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm

ZhongPing Lee, Robert Arnone, Chuanmin Hu, P. Jeremy Werdell, and Bertrand Lubac
Appl. Opt. 49(3) 369-381 (2010)

Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions

Chih-Hua Chang, Cheng-Chien Liu, Hsiao-Wei Chung, Long-Jeng Lee, and Wen-Chang Yang
Appl. Opt. 53(4) 605-617 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
    [Crossref] [PubMed]
  2. J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
    [Crossref]
  3. R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
    [Crossref]
  4. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009).
    [Crossref]
  5. M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947–4962 (2009).
    [Crossref] [PubMed]
  6. J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
    [Crossref]
  7. W. W. Gregg, “Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model,” J. Mar. Syst. 69, 205–225 (2008).
    [Crossref]
  8. Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
    [Crossref] [PubMed]
  9. N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
    [Crossref]
  10. Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191–2201 (2002).
    [Crossref] [PubMed]
  11. P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
    [Crossref] [PubMed]
  12. Z. Lee, A. Weidemann, and R. Arnone, “Combined Effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of Worldview 2,” IEEE Trans. Geosci. Remote Sens. 51, 2577–2586 (2013).
    [Crossref]
  13. D. R. Lyzenga, “Passive remote sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17, 379–383 (1978).
    [Crossref] [PubMed]
  14. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
    [Crossref]
  15. V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
    [Crossref]
  16. J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
    [Crossref]
  17. A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
    [Crossref]
  18. S. Jay and M. Guillaume, “A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data,” Remote Sens. Environ. 147, 121–132 (2014).
    [Crossref]
  19. L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
    [Crossref]
  20. S. Jay and M. Guillaume, “Regularized estimation of bathymetry and water quality using hyperspectral remote sensing,” Int. J. Remote Sens. 37, 263–289 (2016).
    [Crossref]
  21. S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
    [Crossref]
  22. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
    [Crossref]
  23. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
    [Crossref] [PubMed]
  24. D. B. Gillis, J. H. Bowles, and W. J. Moses, “Improving the retrieval of water inherent optical properties in noisy hyperspectral data through statistical modeling,” Opt. Express 21, 21306–21316 (2013).
    [Crossref] [PubMed]
  25. P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical inference (Oxford University, 2002).
  26. A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
    [Crossref]
  27. X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
    [Crossref]
  28. S. Jay and M. Guillaume, “Estimation of water column parameters with a maximum likelihood approach,” in “3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,” (IEEE, 2011), pp. 1–4.
  29. J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
    [Crossref]
  30. R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
    [Crossref]
  31. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
    [Crossref]
  32. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. i. a semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
    [Crossref]
  33. H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in “Ocean Optics XII,” (International Society for Optics and Photonics, 1994), pp. 174–183.
  34. A. Morel, “Optical properties of pure water and pure sea water,” Optical aspects of oceanography 1, 1–24 (1974).
  35. P. Stoica and R. L. Moses, Spectral analysis of signals, vol. 452 (Pearson Prentice Hall Upper Saddle River, NJ, 2005).
  36. K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
    [Crossref]
  37. V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
    [Crossref]
  38. J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
    [Crossref]
  39. M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
    [Crossref]
  40. R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
    [Crossref]
  41. K. G. Ruddick, H. J. Gons, M. Rijkeboer, and G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
    [Crossref]
  42. S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
    [Crossref]
  43. European Space Agency, “Sentinel-2 captures coral bleaching of Great Barrier Reef, http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Sentinel-2_captures_coral_bleaching_of_Great_Barrier_Reef ,” (2017).
  44. A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
    [Crossref]
  45. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnology and oceanography 22, 709–722 (1977).
    [Crossref]
  46. K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
    [Crossref]
  47. S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
    [Crossref]

2017 (2)

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

2016 (5)

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

S. Jay and M. Guillaume, “Regularized estimation of bathymetry and water quality using hyperspectral remote sensing,” Int. J. Remote Sens. 37, 263–289 (2016).
[Crossref]

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
[Crossref]

2015 (3)

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
[Crossref]

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

2014 (3)

S. Jay and M. Guillaume, “A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data,” Remote Sens. Environ. 147, 121–132 (2014).
[Crossref]

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
[Crossref]

2013 (3)

2012 (3)

X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
[Crossref]

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

2011 (2)

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

2010 (2)

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[Crossref] [PubMed]

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

2009 (4)

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009).
[Crossref]

M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947–4962 (2009).
[Crossref] [PubMed]

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
[Crossref]

2008 (1)

W. W. Gregg, “Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model,” J. Mar. Syst. 69, 205–225 (2008).
[Crossref]

2005 (2)

P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
[Crossref] [PubMed]

J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
[Crossref]

2004 (1)

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
[Crossref]

2003 (1)

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[Crossref]

2002 (2)

2001 (1)

1999 (2)

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[Crossref]

1998 (2)

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. i. a semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

1978 (1)

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnology and oceanography 22, 709–722 (1977).
[Crossref]

1974 (1)

A. Morel, “Optical properties of pure water and pure sea water,” Optical aspects of oceanography 1, 1–24 (1974).

Anstee, J.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

Antoine, D.

Arnaubec, A.

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

Arnone, R.

Z. Lee, A. Weidemann, and R. Arnone, “Combined Effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of Worldview 2,” IEEE Trans. Geosci. Remote Sens. 51, 2577–2586 (2013).
[Crossref]

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[Crossref] [PubMed]

Arnone, R. A.

Bailey, S. W.

Barbosa, C. C. F.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

Bejarano, S.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

Bissett, P.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Boss, E.

Boss, E. S.

Bourennane, S.

X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
[Crossref]

Bowles, J. H.

Brando, V.

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

Brando, V. E.

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref] [PubMed]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[Crossref]

Buiteveld, H.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in “Ocean Optics XII,” (International Society for Optics and Photonics, 1994), pp. 174–183.

Campbell, J. W.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009).
[Crossref]

Carder, K. L.

Casey, B.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Chami, M.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Chollett, I.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Christensen, T. R.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

D’Andon, O. H. F.

de Carvalho, L. A. S.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

Dekker, A.

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

Dekker, A. G.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[Crossref]

Deville, Y.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Devred, E.

Donze, M.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in “Ocean Optics XII,” (International Society for Optics and Photonics, 1994), pp. 174–183.

Dörnhöfer, K.

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

Dowell, M.

Dowell, M. D.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009).
[Crossref]

Dubois-Fernandez, P. C.

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

Eakin, C. M.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Fearns, P.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Fearns, P. R.

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
[Crossref]

Feldman, G. C.

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref] [PubMed]

Fossati, C.

X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
[Crossref]

Franz, B. A.

N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
[Crossref]

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref] [PubMed]

Garcia, R. A.

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
[Crossref]

Garthwaite, P. H.

P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical inference (Oxford University, 2002).

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

Gege, P.

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

Gillis, D. B.

Gitelson, A. A.

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Gons, H. J.

Göritz, A.

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

Gregg, W. W.

W. W. Gregg, “Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model,” J. Mar. Syst. 69, 205–225 (2008).
[Crossref]

Guillaume, M.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

S. Jay and M. Guillaume, “Regularized estimation of bathymetry and water quality using hyperspectral remote sensing,” Int. J. Remote Sens. 37, 263–289 (2016).
[Crossref]

S. Jay and M. Guillaume, “A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data,” Remote Sens. Environ. 147, 121–132 (2014).
[Crossref]

S. Jay and M. Guillaume, “Estimation of water column parameters with a maximum likelihood approach,” in “3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,” (IEEE, 2011), pp. 1–4.

Hakvoort, J.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in “Ocean Optics XII,” (International Society for Optics and Photonics, 1994), pp. 174–183.

Harborne, A.

J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
[Crossref]

Harborne, A. R.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Hedley, J.

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
[Crossref]

J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
[Crossref]

Hedley, J. D.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

Heron, S. F.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Hirata, T.

Hu, C.

Hunter, P. D.

S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
[Crossref]

Jay, S.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

S. Jay and M. Guillaume, “Regularized estimation of bathymetry and water quality using hyperspectral remote sensing,” Int. J. Remote Sens. 37, 263–289 (2016).
[Crossref]

S. Jay and M. Guillaume, “A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data,” Remote Sens. Environ. 147, 121–132 (2014).
[Crossref]

S. Jay and M. Guillaume, “Estimation of water column parameters with a maximum likelihood approach,” in “3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,” (IEEE, 2011), pp. 1–4.

Jolliffe, I. T.

P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical inference (Oxford University, 2002).

Jones, B.

P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical inference (Oxford University, 2002).

Jorge, D. S. F.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

Klonowski, W.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Koetz, B.

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

Kutser, T.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
[Crossref]

Laas, A.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

Lafrance, B.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Lavender, S. J.

Lee, Z.

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref] [PubMed]

Z. Lee, A. Weidemann, and R. Arnone, “Combined Effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of Worldview 2,” IEEE Trans. Geosci. Remote Sens. 51, 2577–2586 (2013).
[Crossref]

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[Crossref] [PubMed]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191–2201 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[Crossref]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. i. a semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[Crossref]

Lee, Z. P.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Liu, X.

X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
[Crossref]

Lobo, F. d. L.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

Loisel, H.

Lubac, B.

Lynch, M.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Lyons, M.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Lyzenga, D. R.

Mangin, A.

Maritorena, S.

Martins, V. S.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

McKinna, L. I.

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
[Crossref]

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

Mélin, F.

Minghelli, A.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

Mobley, C.

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Mobley, C. D.

Moore, T. S.

Morel, A.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnology and oceanography 22, 709–722 (1977).
[Crossref]

A. Morel, “Optical properties of pure water and pure sea water,” Optical aspects of oceanography 1, 1–24 (1974).

Moses, R. L.

P. Stoica and R. L. Moses, Spectral analysis of signals, vol. 452 (Pearson Prentice Hall Upper Saddle River, NJ, 2005).

Moses, W. J.

Mumby, P.

J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
[Crossref]

Mumby, P. J.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

Nõges, T.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

Novo, E. M. L. d. M.

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

Oppelt, N.

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

Paavel, B.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

Pahlevan, N.

N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
[Crossref]

Palmer, S. C.

S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
[Crossref]

Patch, J. S.

Pflug, B.

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

Phinn, S.

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

Phinn, S. R.

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
[Crossref]

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnology and oceanography 22, 709–722 (1977).
[Crossref]

Refregier, P.

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

Reichstetter, M.

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

Rijkeboer, M.

Roelfsema, C.

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
[Crossref]

Roelfsema, C. M.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

Roesler, C.

Roueff, A.

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

Ruddick, K. G.

Rundquist, D. C.

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Salama, M. S.

Sarkar, S.

N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
[Crossref]

Schalles, J. F.

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Schiebe, F. R.

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Sepp, M.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

Serfaty, V.

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Shea, D. M.

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

Skirving, W. J.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Smyth, T. J.

Sotheran, I.

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

Stein, A.

Steward, R. G.

Stoica, P.

P. Stoica and R. L. Moses, Spectral analysis of signals, vol. 452 (Pearson Prentice Hall Upper Saddle River, NJ, 2005).

Strong, A. E.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Ticzon, V.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

Tilstone, G.

Tin, H. C.

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

Toming, K.

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

Wang, P.

Weeks, S. J.

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

Weidemann, A.

Z. Lee, A. Weidemann, and R. Arnone, “Combined Effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of Worldview 2,” IEEE Trans. Geosci. Remote Sens. 51, 2577–2586 (2013).
[Crossref]

Werdell, P. J.

Wettle, M.

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
[Crossref]

Yacobi, Y. Z.

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

Appl. Opt. (10)

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. D’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref] [PubMed]

M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947–4962 (2009).
[Crossref] [PubMed]

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[Crossref] [PubMed]

D. R. Lyzenga, “Passive remote sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17, 379–383 (1978).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[Crossref]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191–2201 (2002).
[Crossref] [PubMed]

P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. i. a semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[Crossref]

K. G. Ruddick, H. J. Gons, M. Rijkeboer, and G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40, 3575–3585 (2001).
[Crossref]

IEEE Geosci. Remote Sens. Lett (1)

A. Roueff, A. Arnaubec, P. C. Dubois-Fernandez, and P. Refregier, “Cramer–rao lower bound analysis of vegetation height estimation with random volume over ground model and polarimetric sar interferometry,” IEEE Geosci. Remote Sens. Lett 8, 1115–1119 (2011).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (3)

X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens. 50, 3717–3724 (2012).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[Crossref]

Z. Lee, A. Weidemann, and R. Arnone, “Combined Effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of Worldview 2,” IEEE Trans. Geosci. Remote Sens. 51, 2577–2586 (2013).
[Crossref]

Int. J. Remote Sens. (2)

S. Jay and M. Guillaume, “Regularized estimation of bathymetry and water quality using hyperspectral remote sensing,” Int. J. Remote Sens. 37, 263–289 (2016).
[Crossref]

J. Hedley, A. Harborne, and P. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos,” Int. J. Remote Sens. 26, 2107–2112 (2005).
[Crossref]

J. Appl. Phycol. (1)

A. A. Gitelson, J. F. Schalles, D. C. Rundquist, F. R. Schiebe, and Y. Z. Yacobi, “Comparative reflectance properties of algal cultures with manipulated densities,” J. Appl. Phycol. 11, 345–354 (1999).
[Crossref]

J. Geophys. Res. Oceans (2)

L. I. McKinna, P. R. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120, 1741–1770 (2015).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
[Crossref]

J. Mar. Syst. (1)

W. W. Gregg, “Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model,” J. Mar. Syst. 69, 205–225 (2008).
[Crossref]

Limnol. Oceanogr. Methods (2)

R. A. Garcia, L. I. McKinna, J. D. Hedley, and P. R. Fearns, “Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise,” Limnol. Oceanogr. Methods 12, 651–669 (2014).
[Crossref]

A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. Methods 9, 396–425 (2011).
[Crossref]

Limnology and oceanography (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnology and oceanography 22, 709–722 (1977).
[Crossref]

Opt. Express (1)

Optical aspects of oceanography (1)

A. Morel, “Optical properties of pure water and pure sea water,” Optical aspects of oceanography 1, 1–24 (1974).

Remote Sens. (6)

J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012).
[Crossref]

J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. Harborne, S. F. Heron, S. J. Weeks, W. J. Skirving, A. E. Strong, C. M. Eakin, T. R. Christensen, V. Ticzon, S. Bejarano, and P. J. Mumby, “Remote sensing of coral reefs for monitoring and management: A review,” Remote Sens. 8, 118 (2016).
[Crossref]

K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, “First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery,” Remote Sens. 8, 640 (2016).
[Crossref]

K. Dörnhöfer, A. Göritz, P. Gege, B. Pflug, and N. Oppelt, “Water constituents and water depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake,” Remote Sens. 8, 941 (2016).
[Crossref]

V. S. Martins, C. C. F. Barbosa, L. A. S. de Carvalho, D. S. F. Jorge, F. d. L. Lobo, and E. M. L. d. M. Novo, “Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes,” Remote Sens. 9, 322 (2017).
[Crossref]

R. A. Garcia, J. D. Hedley, H. C. Tin, and P. R. Fearns, “A method to analyze the potential of optical remote sensing for benthic habitat mapping,” Remote Sens. 7, 13157–13189 (2015).
[Crossref]

Remote Sens. Environ. (11)

S. Bejarano, P. J. Mumby, J. D. Hedley, and I. Sotheran, “Combining optical and acoustic data to enhance the detection of caribbean forereef habitats,” Remote Sens. Environ. 114, 2768–2778 (2010).
[Crossref]

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef,” Remote Sens. Environ. 93, 188–197 (2004).
[Crossref]

S. C. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157, 1–8 (2015).
[Crossref]

R. A. Garcia, P. R. Fearns, and L. I. McKinna, “Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia,” Remote Sens. Environ. 147, 186–205 (2014).
[Crossref]

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009).
[Crossref]

N. Pahlevan, S. Sarkar, and B. A. Franz, “Uncertainties in coastal ocean color products: Impacts of spatial sampling,” Remote Sens. Environ. 181, 14–26 (2016).
[Crossref]

S. Jay and M. Guillaume, “A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data,” Remote Sens. Environ. 147, 121–132 (2014).
[Crossref]

V. Brando, J. Anstee, M. Wettle, A. Dekker, S. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009).
[Crossref]

J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009).
[Crossref]

J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, “Capability of the Sentinel-2 mission for tropical coral reef mapping and coral bleaching detection,” Remote Sens. Environ. 120, 145–155 (2012).
[Crossref]

S. Jay, M. Guillaume, A. Minghelli, Y. Deville, M. Chami, B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance,” Remote Sens. Environ. 200, 352–367 (2017).
[Crossref]

Other (5)

P. H. Garthwaite, I. T. Jolliffe, and B. Jones, Statistical inference (Oxford University, 2002).

S. Jay and M. Guillaume, “Estimation of water column parameters with a maximum likelihood approach,” in “3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,” (IEEE, 2011), pp. 1–4.

P. Stoica and R. L. Moses, Spectral analysis of signals, vol. 452 (Pearson Prentice Hall Upper Saddle River, NJ, 2005).

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” in “Ocean Optics XII,” (International Society for Optics and Photonics, 1994), pp. 174–183.

European Space Agency, “Sentinel-2 captures coral bleaching of Great Barrier Reef, http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Sentinel-2_captures_coral_bleaching_of_Great_Barrier_Reef ,” (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Environmental noise estimation based on the MSI, HICO, OLCI and MODIS (columns 1 to 4, resp.) images (row 1), where unreliable pixels (e.g., land and clouds) are masked. For each image, the white arrow in row 2 indicates the minimum of the modified ALCL-generated image (corresponding to the most homogeneous area), where the Γs matrix (row 3) is estimated. In row 3, the size of each uniformly colored area denotes the sensor bandwidths at the corresponding wavebands (no spectral data measured in the black areas). Note that the colorbar is the same for each row.
Fig. 2
Fig. 2 Square roots of CRBs of (a) H, (b) aϕ(440), (c) bbp(550) and (d) B (all in [%]) versus depth for optically shallow water and HICO configuration. Other model parameters are fixed: aϕ(440) = 0:05 m−1, ag(440) = 0:1 m−1, bbp(550) = 0:01 m−1, and the bottom is a mix of sand and seagrasses with B = 0:5. Various situations are considered: no a priori knowledge (Section 4.2.2), and perfect a priori knowledge on H, on both H and B, or on every parameter except the targeted one (Section 4.3.1). The LS and MILE experimental standard deviations obtained without a priori knowledge are also displayed.
Fig. 3
Fig. 3 Square roots of CRBs of (a) aϕ(440), (b) ag(440) and (c) bbp(550) (all in [%]) for optically deep water and HICO configuration, and for the eight water types defined in [4] and corresponding to the parameter values shown in Table 2. Various situations are considered: no a priori knowledge (Section 4.2.3), and perfect a priori knowledge on aϕ(440), on ag(440), on bbp(550), or on every parameter except the targeted one (Section 4.3.2). The LS and MILE experimental standard deviations obtained without a priori knowledge are also displayed.
Fig. 4
Fig. 4 Square roots of CRBs of (a) H, (b) aϕ(440), (c) bbp(550) and (d) B (all in [%]) versus depth for optically shallow water and MSI, HICO, OLCI and MODIS configurations. Other model parameters are fixed: aϕ(440) = 0.05 m−1, ag(440) = 0.1 m−1, bbp(550) = 0.01 m−1, and the bottom is a mix of sand and seagrasses with B = 0.5.
Fig. 5
Fig. 5 Square roots of CRBs of aϕ(440) (row 1) and bbp(550) (row 2) (all in [%]) versus aϕ(440) and bbp(550) for optically deep water and MSI, HICO, OLCI and MODIS (columns 1 to 4, resp.) configurations. ag(440) is set to 0.01 m−1. Isolines are represented every 5%. White areas correspond to CRB values higher than 200%.
Fig. 6
Fig. 6 Same as Fig. 5, but with ag(440) = 0.12 m−1.

Tables (3)

Tables Icon

Table 1 Features of the remote-sensing images used to estimate the environmental noise.

Tables Icon

Table 2 aϕ(440), ag(440) and bbp(550) estimated values for the water types defined in [4].

Tables Icon

Table 3 Ranges of square roots of aϕ(440) and bbp(550) CRBs (all in [%]) observed in Fig. 5 and Fig. 6 for Case-1 (0.005 ≤ aϕ(440) ≤ 0.03 m−1, ag(440) = 0.01 m−1, 0.001 ≤ bbp(550) ≤ 0.003 m−1) and Case-2 (0.1 ≤ aϕ(440) ≤ 1 m−1, ag(440) = 0.12 m−1, 0.01 ≤ bbp(550) ≤ 0.1 m−1) deep waters and MSI, HICO, OLCI and MODIS configurations.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

μ ( λ ) = r r s , ( λ ) { 1 exp [ ( k d ( λ ) + k u c ( λ ) ) H ] } + 1 π [ B ρ b , 1 ( λ ) + ( 1 B ) ρ b , 2 ( λ ) ] exp [ ( k d ( λ ) + k u b ( λ ) ) H ]
r r s , ( λ ) = ( 0.084 + 0.17 b b ( λ ) a ( λ ) + b b ( λ ) ) b b ( λ ) a ( λ ) + b b ( λ )
k d ( λ ) = a ( λ ) + b b ( λ ) cos θ s
k u c ( λ ) = 1.03 cos θ v ( a ( λ ) + b b ( λ ) ) ( 1 + 2.4 b b ( λ ) a ( λ ) + b b ( λ ) ) 0.5
k u b ( λ ) = 1.04 cos θ v ( a ( λ ) + b b ( λ ) ) ( 1 + 5.4 b b ( λ ) a ( λ ) + b b ( λ ) ) 0.5
a ( λ ) = a w ( λ ) + { a 0 ( λ ) + a 1 ( λ ) ln [ a ϕ ( 440 ) ] } a ϕ ( 440 ) + a g ( 440 ) a g ( λ )
b b ( λ ) = b b w ( λ ) + b b p ( 550 ) b b p ( λ )
μ ( λ ) = r r s , ( λ )
E [ ( Δ ^ i ( r r s ) Δ i ) 2 ] [ CRB ( Δ ) ] i , i
[ I F ( Δ ) ] i , j = E [ ln ( P ( r r s | Δ ) ) Δ i ln ( P ( r r s | Δ ) ) Δ j ]
[ I F ( Δ ) ] i , j = 1 2 tr ( Γ s   1 Γ s Δ i Γ s   1 Γ s Δ j ) + μ Δ i Γ s   1 μ Δ j
[ I F ( Δ ) ] i , j = μ Δ i Γ s   1 μ Δ j .
Δ ^ L S ( r r s ) = arg min Δ [ ( r r s μ ( Δ ) ) t ( r r s μ ( Δ ) ) ] .
Δ ^ M I L E ( r r s ) = arg min Δ [ ( r r s μ ( Δ ) ) t Γ s   1 ( r r s μ ( Δ ) ) ] .
μ H = r r s , ( k d + k u c ) e ( k d + k u c ) H 1 π [ B ρ b , 1 + ( 1 B ) ρ b , 2 ] ( k d + k u b ) e ( k d + k u b ) H
μ B = 1 π [ ρ b , 1 ρ b , 2 ] e ( k d + k u b ) H
μ P = r r s , P ( 1 e ( k d + k u c ) H ) + r r s , ( k d P + k u c P ) H e ( k d + k u c ) H 1 π [ B ρ b , 1 + ( 1 B ) ρ b , 2 ] ( k d P + k u b P ) H e ( k d + k u b ) H .
r r s , P = ( 0.084 + 0.34 u ) u P
k d P = 1 cos θ s κ P
k u c P = 1.03 cos θ v [ κ P ( 1 + 2.4 u ) 0.5 + 1.2 κ u P ( 1 + 2.4 u ) 0.5 ]
k u b P = 1.04 cos θ v [ κ P ( 1 + 5.4 u ) 0.5 + 2.7 κ u P ( 1 + 5.4 u ) 0.5 ] .
κ P = a P + b b P
u P = a b b P b b a P ( a + b b ) 2 .
a P = a 0 + a 1 ( 1 + ln P ) .
a G = a g
b b X = b b P *

Metrics