Abstract

A computationally efficient time-resolved diffuse optical tomography (TR-DOT) prototype was demonstrated using an accelerated inverse problem solver to reconstruct high quality 3D images of highly scattering media such as tissues. The inverse problem solver utilizes seven well-defined points on each experimentally recorded histogram of the distribution time-of-flight (DToF). In this work, the accuracy of the recovered optical properties, and the computational load and time of TR-DOT prototype were investigated using cylindrical turbid phantoms. These phantoms were measured using transmittance geometry under different conditions in multiple experiments to evaluate the performance of this prototype. Overall, the results of evaluation are important in the realization of a real-time and highly accurate TR-DOT system for diffuse optical imaging applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of image quality in diffuse optical tomography by use of full time-resolved data

Feng Gao, Huijuan Zhao, and Yukio Yamada
Appl. Opt. 41(4) 778-791 (2002)

Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

Ying Mu and Mark Niedre
Biomed. Opt. Express 6(9) 3596-3609 (2015)

Accelerating nonlinear reconstruction in laminar optical tomography by use of recursive SVD inversion

Mengyu Jia, Jingying Jiang, Wenjuan Ma, Chenxi Li, Shuang Wang, Huijuan Zhao, and Feng Gao
Biomed. Opt. Express 8(9) 4275-4293 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
    [Crossref]
  2. A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).
    [Crossref] [PubMed]
  3. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
    [Crossref] [PubMed]
  4. X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.
  5. A. Welch and M. Van Gemert, Optical-thermal response of laser-irradiated tissue (Springer, 2011), vol. 2.
  6. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
    [Crossref] [PubMed]
  7. F. Martelli, S. Del Bianco, and A. Ismaelli, Light propagation through biological tissue and other diffusive media, (Society of Photo-Optical Instrumentation Engineers, 2009).
  8. S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [Crossref]
  9. D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
    [Crossref]
  10. T. Jue and K. Masuda, Application of Near Infrared Spectroscopy in Biomedicine (Springer, 2013).
  11. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
    [Crossref] [PubMed]
  12. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
    [Crossref] [PubMed]
  13. S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  14. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  15. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
    [Crossref] [PubMed]
  16. F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
    [Crossref] [PubMed]
  17. M. Naser and M. J. Deen, “Time-domain diffuse optical tomography using recursive direct method of calculating Jacobian at selected temporal points,” Biomed. Phys. Eng. Express 1(4), 045207 (2015).
    [Crossref]
  18. “Picosecond Pulsed Sources,” https://www.picoquant.com/products/category/picosecond-pulsed-sources/ldh-series-picosecond-pulsed-diode-laser-heads .
  19. “Fiber Coupling,” picoquant, https://www.picoquant.com/products/category/picosecond-pulsed-sources/ldh-series-picosecond-pulsed-diode-laser-heads#custom2 . [Accessed 14 11 2017].
  20. “0.22NA VIS/NIR Patchcord 1000 Micron Fiber w/ FC Connector,” Edmund Optics Inc., https://www.edmundoptics.com/optics/fiber-optics/0.22na-visnir-patchcord-1000-micron-fiber-w-fc-connector/#description . [Accessed 20 08 2017].
  21. “PDM,” http://www.micro-photon-devices.com/Products/Photon-Counters/PDM . [Accessed 01 07 2017].
  22. “TCSPC and Time Tagging Electronics,” http://www.picoquant.com/products/category/tcspc-and-time-tagging-modules . [Accessed 30 06 2017].
  23. “Stepper Motor with Cable,” https://www.sparkfun.com/products/9238 . [Accessed 11 07 2017].
  24. M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
    [Crossref] [PubMed]
  25. M. Naser, “Improving the reconstruction image contrast of time-domain diffuse optical tomography using high accuracy Jacobian matrix,” Biomed. Phys. Eng. Express 2(1), 015015 (2016).
    [Crossref]
  26. “Huntsman,” http://www.huntsman.com/advanced_materials/a/Home . [Accessed 15 6 2017].
  27. “Sigma-Aldrich Co. LLC,” http://www.sigmaaldrich.com/united-states.html .
  28. E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
    [Crossref]
  29. H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
    [Crossref]
  30. M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
    [Crossref]
  31. M. Wahl, “Time-correlated single photon counting,” Tech. Note, PicoQuant GmbH, Berlin, Germany, (2014).
  32. H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
    [Crossref] [PubMed]
  33. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
    [Crossref] [PubMed]
  34. Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).
  35. M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
    [Crossref] [PubMed]
  36. E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
    [Crossref]
  37. M. Alayed and M. J. Deen, “Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges,” Sensors (Basel) 17(9), 2115 (2017).
    [Crossref] [PubMed]
  38. L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
    [Crossref] [PubMed]
  39. Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in International Symposium on Biomedical Imaging (ISBI’09), (IEEE, 2009), pp. 1142–1145.
  40. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
    [Crossref] [PubMed]
  41. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
    [Crossref] [PubMed]
  42. E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
    [Crossref] [PubMed]
  43. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
    [Crossref] [PubMed]
  44. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
    [Crossref] [PubMed]
  45. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [Crossref] [PubMed]
  46. E. Okada, “Photon Migration in NIRS Brain Imaging‏,” in Application of Near Infrared Spectroscopy in Biomedicine, T. Jue, and K. Masuda, eds. (Springer US, 2013).
  47. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
    [Crossref] [PubMed]

2017 (1)

M. Alayed and M. J. Deen, “Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges,” Sensors (Basel) 17(9), 2115 (2017).
[Crossref] [PubMed]

2016 (3)

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

M. Naser, “Improving the reconstruction image contrast of time-domain diffuse optical tomography using high accuracy Jacobian matrix,” Biomed. Phys. Eng. Express 2(1), 015015 (2016).
[Crossref]

2015 (2)

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

M. Naser and M. J. Deen, “Time-domain diffuse optical tomography using recursive direct method of calculating Jacobian at selected temporal points,” Biomed. Phys. Eng. Express 1(4), 045207 (2015).
[Crossref]

2014 (4)

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

2012 (2)

2011 (2)

F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

2009 (2)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

2008 (3)

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

2007 (2)

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

2006 (1)

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

2005 (3)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

2003 (1)

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

2001 (2)

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

2000 (1)

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

1999 (1)

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Alayed, M.

M. Alayed and M. J. Deen, “Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges,” Sensors (Basel) 17(9), 2115 (2017).
[Crossref] [PubMed]

Arridge, S.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Bargigia, I.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Barrett, H. H.

Bassi, A.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Bérubé-Lauzière, Y.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Boas, D.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in International Symposium on Biomedical Imaging (ISBI’09), (IEEE, 2009), pp. 1142–1145.

Boas, D. A.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

Boucher, S.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Brambilla, M.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

Brooks, D.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Chabrier, R.

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

Chen, L.

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

Chen, N.

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Clarkson, E.

Comelli, D.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Contini, D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Cooper, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Crotti, M.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Cubeddu, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Dalla Mora, A.

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Deen, M. J.

M. Alayed and M. J. Deen, “Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges,” Sensors (Basel) 17(9), 2115 (2017).
[Crossref] [PubMed]

M. Naser and M. J. Deen, “Time-domain diffuse optical tomography using recursive direct method of calculating Jacobian at selected temporal points,” Biomed. Phys. Eng. Express 1(4), 045207 (2015).
[Crossref]

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Dehghani, H.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Delpy, D.

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Delpy, D. T.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Derouard, J.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

Di Sieno, L.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

DiMarzio, C.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Dinten, J. M.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

Diop, M.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Ettehadi, S.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Fang, Q.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in International Symposium on Biomedical Imaging (ISBI’09), (IEEE, 2009), pp. 1142–1145.

Faramarzpour, N.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Farina, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

Gaudette, R.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Gibson, A.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Grosenick, D.

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

Hebden, J.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Hervé, L.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

Hillman, E.

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Hillman, E. M.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

Jelzow, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Jha, A. K.

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

Kacprzak, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Kfouri, M.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Kilmer, M.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Kupinski, M. A.

Liebert, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Liu, L. W.-C.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Macdonald, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Marinov, O.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Martinenghi, E.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Maslov, A. V.

Masumura, T.

Mazurenka, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Milej, D.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Miller, E.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Mora, A. D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

Naser, M.

M. Naser, “Improving the reconstruction image contrast of time-domain diffuse optical tomography using high accuracy Jacobian matrix,” Biomed. Phys. Eng. Express 2(1), 015015 (2016).
[Crossref]

M. Naser and M. J. Deen, “Time-domain diffuse optical tomography using recursive direct method of calculating Jacobian at selected temporal points,” Biomed. Phys. Eng. Express 1(4), 045207 (2015).
[Crossref]

Nouizi, F.

Okawa, S.

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Paulsen, K. D.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

Penney, T.

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

Pichette, J.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Pifferi, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Pogue, B. W.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

Poulet, P.

Quevedo, P.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Rech, I.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Sawosz, P.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Schmidt, F.

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Schmidt, F. E.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Schotland, J.

S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Schweiger, M.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

Selb, J.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

Shirani, S.

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

Spectrosc, J.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

Spinelli, L.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

St Lawrence, K.

Steinkellner, O.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

Taroni, P.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Taubert, D.

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Taubert, D. R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Torregrossa, M.

Torricelli, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Tse, C.

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

Villa, F.

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Wabnitz, H.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Yalavarthy, P. K.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

Yamada, Y.

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Zhang, Q.

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Zhou, X.

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

Zouaoui, J.

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

Zucchelli, L.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Biomed. Phys. Eng. Express (2)

M. Naser and M. J. Deen, “Time-domain diffuse optical tomography using recursive direct method of calculating Jacobian at selected temporal points,” Biomed. Phys. Eng. Express 1(4), 045207 (2015).
[Crossref]

M. Naser, “Improving the reconstruction image contrast of time-domain diffuse optical tomography using high accuracy Jacobian matrix,” Biomed. Phys. Eng. Express 2(1), 015015 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Kfouri, O. Marinov, P. Quevedo, N. Faramarzpour, S. Shirani, L. W.-C. Liu, Q. Fang, and M. J. Deen, “Toward a miniaturized wireless fluorescence-based diagnostic imaging system,” IEEE J. Sel. Top. Quantum Electron. 14(1), 226–234 (2008).
[Crossref]

IEEE Photonics J. (1)

E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

IEEE Signal Process. Mag. (1)

D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Inverse Probl. (2)

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

J. Biomed. Opt. (8)

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

L. Di Sieno, J. Zouaoui, L. Hervé, A. Pifferi, A. Farina, E. Martinenghi, J. Derouard, J. M. Dinten, and A. D. Mora, “Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study,” J. Biomed. Opt. 21(11), 116002 (2016).
[Crossref] [PubMed]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6), 2085–2098 (2007).
[Crossref] [PubMed]

Neuroimage (1)

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Philos Trans. A Math. Phys. Eng. Sci. (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos Trans. A Math. Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[Crossref] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Wabnitz, A. Pifferi, A. Torricelli, D. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, P. Sawosz, A. Liebert, R. Macdonald, and R. Cubeddu, “Assessment of basic intrumental performance of time-domain optical brain imagers,” Proc. SPIE 7896, 789602 (2011).
[Crossref]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography‏,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

E. Hillman, J. Hebden, F. Schmidt, S. Arridge, M. Schweiger, H. Dehghani, and D. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79(1), 013103 (2008).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Alayed and M. J. Deen, “Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges,” Sensors (Basel) 17(9), 2115 (2017).
[Crossref] [PubMed]

Other (16)

Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in International Symposium on Biomedical Imaging (ISBI’09), (IEEE, 2009), pp. 1142–1145.

Y. Bérubé-Lauzière, M. Crotti, S. Boucher, S. Ettehadi, J. Pichette, and I. Rech, “Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal ImagingJ. Spectrosc. 2016, 1947613 (2016).

M. Wahl, “Time-correlated single photon counting,” Tech. Note, PicoQuant GmbH, Berlin, Germany, (2014).

“Huntsman,” http://www.huntsman.com/advanced_materials/a/Home . [Accessed 15 6 2017].

“Sigma-Aldrich Co. LLC,” http://www.sigmaaldrich.com/united-states.html .

“Picosecond Pulsed Sources,” https://www.picoquant.com/products/category/picosecond-pulsed-sources/ldh-series-picosecond-pulsed-diode-laser-heads .

“Fiber Coupling,” picoquant, https://www.picoquant.com/products/category/picosecond-pulsed-sources/ldh-series-picosecond-pulsed-diode-laser-heads#custom2 . [Accessed 14 11 2017].

“0.22NA VIS/NIR Patchcord 1000 Micron Fiber w/ FC Connector,” Edmund Optics Inc., https://www.edmundoptics.com/optics/fiber-optics/0.22na-visnir-patchcord-1000-micron-fiber-w-fc-connector/#description . [Accessed 20 08 2017].

“PDM,” http://www.micro-photon-devices.com/Products/Photon-Counters/PDM . [Accessed 01 07 2017].

“TCSPC and Time Tagging Electronics,” http://www.picoquant.com/products/category/tcspc-and-time-tagging-modules . [Accessed 30 06 2017].

“Stepper Motor with Cable,” https://www.sparkfun.com/products/9238 . [Accessed 11 07 2017].

T. Jue and K. Masuda, Application of Near Infrared Spectroscopy in Biomedicine (Springer, 2013).

X. Zhou, L. Chen, C. Tse, T. Penney, and N. Chen, “Theoretical investigation of near-infrared light path in multi-layer brain models for three DOT systems‏,” in Photonics Global Conference (PGC), (IEEE, 2012), pp. 1–5.

A. Welch and M. Van Gemert, Optical-thermal response of laser-irradiated tissue (Springer, 2011), vol. 2.

F. Martelli, S. Del Bianco, and A. Ismaelli, Light propagation through biological tissue and other diffusive media, (Society of Photo-Optical Instrumentation Engineers, 2009).

E. Okada, “Photon Migration in NIRS Brain Imaging‏,” in Application of Near Infrared Spectroscopy in Biomedicine, T. Jue, and K. Masuda, eds. (Springer US, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Diagram of the Time-Resolved Diffuse Optical Tomography (TR-DOT) prototype.
Fig. 2
Fig. 2 Diagram of steady-state spatially resolved diffuse reflectance system used to accurately determine the optical properties (OP) of phantom and inclusion materials.
Fig. 3
Fig. 3 The total IRF of our TR-DOS setup (~0.3 ns) and the recorded DToF at 180°.
Fig. 4
Fig. 4 Flowchart of the integrated TR-DOT prototype.
Fig. 5
Fig. 5 Cross correlation of the actual OP of the inclusion versus the recovered OP for inclusion and background of the first phantom (one inclusion). (a) Actual μ s ' against recovered μ s ' ; (b) Actual µa against recovered µa; (c) Actual μ s ' against recovered µa; (d) Actual µa against recovered μ s ' .
Fig. 6
Fig. 6 Cross sectional and sagittal views of images for actual μ s ' (left) and µa (right) coefficients for two phantoms: (row 1) the 1st phantom, and (row 2) the 2nd phantom.
Fig. 7
Fig. 7 Left column: cross sectional and sagittal views of images. Right column: the recovered μ s ' and µa for: the 1st phantom (rows 1 and 2), and the 2nd phantom (rows 3 and 4).
Fig. 8
Fig. 8 Left column: Cross sectional and sagittal views of images. Right column: the recovered μ s ' and µa for the 2nd phantom: 12 sources and 84 detectors (rows 1 and 2), and 6 sources and 42 detectors (rows 3 and 4).
Fig. 9
Fig. 9 Left column: Cross sectional and sagittal views of images. Right column: the recovered μ s ' and µa for the 2nd phantom: 12 sources and 84 detectors (rows 1 and 2), 12 sources and 60 detectors (rows 3 and 4), and 12 sources and 48 detectors (rows 5 and 6).
Fig. 10
Fig. 10 Left column: cross sectional and sagittal views of images. Right column: the recovered μ s ' and µa for the 1st phantom: with hard prior (rows 1 and 2), and without prior knowledge (rows 3 and 4).
Fig. 11
Fig. 11 Left column: cross sectional and sagittal views of images. Right column: the recovered μ s ' and µa for the 2nd phantom without prior knowledge: 1.5 cm ROI (rows 1 and 2), and 1.8 cm ROI (rows 3 and 4).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( 1 c' t κ( r,λ ) μ a ( r,λ ) )φ( r,t,λ )=S( r,t,λ )(rΩ)
[ 1+2κ( r,λ )ξ n ^ ( r ). ]φ( r,t,λ )=0( rΩ )
ξ=( ( 2/ ( 1 R 0 ) )1+ | cos θ c | 3 )
IR F Total IR F Laser 2 +IR F Detector 2 +IR F OpFb 2 +IR F TCSPC 2
DTo F Measured =DTo F Simulated IR F Total

Metrics