Abstract

We report the design, fabrication, and characterization of an optically switchable polarizing beam splitter with a prism/azobenzene liquid crystal/prism hybrid structure. The beam splitter can operate in the polarization-splitting mode and the non-splitting mode. The switching between the modes is realized by the photoisomerization-induced phase transitions in the azobenzene liquid crystal, featuring all-optical control, bistability, and fast response. Such an active polarization-handling element is highly desirable as it not only simplifies and compacts sophisticated optical systems but also increases the degree of freedom in optical circuit design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors

Uladzimir A. Hrozhyk, Svetlana V. Serak, Nelson V. Tabiryan, Timothy J. White, and Timothy J. Bunning
Opt. Express 18(9) 9651-9657 (2010)

Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC

Ming Shian Li, Andy Ying-Guey Fuh, Jui-Hsiang Liu, and Shing-Trong Wu
Opt. Express 20(23) 25545-25553 (2012)

Bidirectional Photoresponse of Surface Pretreated Azobenzene Liquid Crystal Polymer Networks

Uladzimir Hrozhyk, Svetlana Serak, Nelson Tabiryan, Timothy J. White, and Timothy J. Bunning
Opt. Express 17(2) 716-722 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
    [Crossref]
  2. S. Zhang, L. J. Gibson, A. B. Stilgoe, I. A. Favre-Bulle, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Ultrasensitive rotating photonic probes for complex biological systems,” Optica 4(9), 1103–1108 (2017).
    [Crossref]
  3. C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
    [Crossref] [PubMed]
  4. X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
    [Crossref]
  5. D. F. Vanderwerf, “Polarization Properties of Prisms and Reflectors,” in Applied Prismatic and Reflective Optics (Society of Photo-Optical Instrumentation Engineers, 2010), pp. 61–70.
  6. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
    [Crossref]
  7. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  8. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
    [Crossref] [PubMed]
  9. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
    [Crossref]
  10. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
    [Crossref]
  11. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
    [Crossref] [PubMed]
  12. J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
    [Crossref]
  13. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
    [Crossref]
  14. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
    [Crossref] [PubMed]
  15. R. A. Soref and D. H. McMahon, “Optical Design of Wollaston-Prism Digital Light Deflectors,” Appl. Opt. 5(3), 425–434 (1966).
    [Crossref] [PubMed]
  16. S. M. Macneille, “Beam splitter,” US Patent 2403731 (1946).
  17. M. Banning, “Practical methods of making and using multilayer filters,” J. Opt. Soc. Am. 37(10), 792–797 (1947).
    [Crossref] [PubMed]
  18. R. Appel, C. D. Dyer, and J. N. Lockwood, “Design of a broadband UV-visible α-barium borate polarizer,” Appl. Opt. 41(13), 2470–2480 (2002).
    [Crossref] [PubMed]
  19. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  20. H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
    [Crossref]
  21. P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
    [Crossref]
  22. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
    [Crossref]
  23. E. Hecht, Optics, 5th ed. (Pearson, 2016).
  24. N. V. Tabiryan and I.-C. Khoo, “Recent Advances in Nematic Liquid Crystal Nonlinear Optics,” in Handbook of Liquid Crystals (Wiley-VCH Verlag GmbH & Co., 2014), pp. 453–473.
  25. C.-W. Chen, T.-H. Lin, and I. C. Khoo, “Dynamical studies of the mechanisms for optical nonlinearities of methyl-red dye doped blue phase liquid crystals,” Opt. Express 23(17), 21650–21656 (2015).
    [Crossref] [PubMed]
  26. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
    [Crossref] [PubMed]
  27. N. Abadía, D. Xiangyang, Q. Lu, W. H. Guo, E. El-Fiky, D. V. Plant, and J. F. Donegan, “Novel polarization beam splitter based on p-i-n structure for an indium phosphide platform,” in 2017 19th International Conference on Transparent Optical Networks (ICTON, 2017), paper Tu.A5.1.
    [Crossref]
  28. U. G. Yasa, M. Turduev, I. H. Giden, and H. Kurt, “High Extinction Ratio Polarization Beam Splitter Design by Low-Symmetric Photonic Crystals,” J. Lightwave Technol. 35(9), 1677–1683 (2017).
    [Crossref]

2017 (5)

M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
[Crossref]

S. Zhang, L. J. Gibson, A. B. Stilgoe, I. A. Favre-Bulle, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Ultrasensitive rotating photonic probes for complex biological systems,” Optica 4(9), 1103–1108 (2017).
[Crossref]

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

U. G. Yasa, M. Turduev, I. H. Giden, and H. Kurt, “High Extinction Ratio Polarization Beam Splitter Design by Low-Symmetric Photonic Crystals,” J. Lightwave Technol. 35(9), 1677–1683 (2017).
[Crossref]

2016 (2)

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
[Crossref] [PubMed]

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

2015 (2)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

C.-W. Chen, T.-H. Lin, and I. C. Khoo, “Dynamical studies of the mechanisms for optical nonlinearities of methyl-red dye doped blue phase liquid crystals,” Opt. Express 23(17), 21650–21656 (2015).
[Crossref] [PubMed]

2013 (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

2010 (2)

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[Crossref] [PubMed]

2007 (3)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

2002 (1)

2001 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

1999 (1)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]

1995 (1)

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

1966 (1)

1947 (1)

Achiam, Y.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Adamczyk, O.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Almeida, M. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Appel, R.

Aspuru-Guzik, A.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Banning, M.

Barbieri, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Beom-Hoan, O.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Bhandare, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Biamonte, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Bird, J. C.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Chen, C.-W.

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]

Dai, D.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Deokha, W.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Dyer, C. D.

El-Hang, L.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Favre-Bulle, I. A.

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Fukuda, H.

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Gibson, L. J.

Giden, I. H.

Gillett, G. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Goggin, M. E.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Gottesman, D.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]

Grossard, N.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Hauden, J.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Hoffmann, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Hoke, L.

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Hyun Ho, R.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Ibrahim, S. K.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Itabashi, S.

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Jae Wan, J.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Jung Moo, H.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Kalra, Y.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Kassal, I.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Khoo, I. C.

Kimball, B. R.

Kurt, H.

Lanyon, B. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Li, B.

Liang, F.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

Lin, T.-H.

Liu, L.

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Liu, N.

Liu, Y.

Lockwood, J. N.

Macias-Romero, C.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

McMahon, D. H.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mohseni, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Nahalka, I.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Nieminen, T. A.

Noe, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Okur, H. I.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Papaioannou, M.

M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
[Crossref]

Peveling, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Pfau, T.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Plum, E.

M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Porrmann, M.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Porte, H.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Powell, B. J.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Rani, P.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Roke, S.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Sandel, D.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Se-Geun, P.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Seung Gol, L.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shepherd, G. G.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

Shi, L.

Shinojima, H.

Sinha, R. K.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Solheim, B. H.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

Song, X.

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

Soon Ryong, P.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Soref, R. A.

Steeves, D. M.

Stilgoe, A. B.

Sunho, K.

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Tsuchizawa, T.

Turduev, M.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Watanabe, T.

White, A. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Whitfield, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Wu, S.

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

Xu, D.-X.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, X.

Yamada, K.

Yasa, U. G.

Yuan, S.

Zhai, X.

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

Zheludev, N. I.

M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
[Crossref]

Zhu, S.

ACS Photonics (1)

M. Papaioannou, E. Plum, and N. I. Zheludev, “All-optical pattern recognition and image processing on a metamaterial beam splitter,” ACS Photonics 4(2), 217–222 (2017).
[Crossref]

Adv. Funct. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Appl. Opt. (2)

Atmosphere (1)

X. Song, X. Zhai, L. Liu, and S. Wu, “Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer,” Atmosphere 8(1), 9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

H. Jung Moo, R. Hyun Ho, P. Soon Ryong, J. Jae Wan, L. Seung Gol, L. El-Hang, P. Se-Geun, W. Deokha, K. Sunho, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Meas. Sci. Technol. (1)

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6(9), 1368–1378 (1995).
[Crossref]

Nat. Chem. (1)

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2(2), 106–111 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Nature (1)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. A (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Science (1)

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Other (5)

D. F. Vanderwerf, “Polarization Properties of Prisms and Reflectors,” in Applied Prismatic and Reflective Optics (Society of Photo-Optical Instrumentation Engineers, 2010), pp. 61–70.

S. M. Macneille, “Beam splitter,” US Patent 2403731 (1946).

N. Abadía, D. Xiangyang, Q. Lu, W. H. Guo, E. El-Fiky, D. V. Plant, and J. F. Donegan, “Novel polarization beam splitter based on p-i-n structure for an indium phosphide platform,” in 2017 19th International Conference on Transparent Optical Networks (ICTON, 2017), paper Tu.A5.1.
[Crossref]

E. Hecht, Optics, 5th ed. (Pearson, 2016).

N. V. Tabiryan and I.-C. Khoo, “Recent Advances in Nematic Liquid Crystal Nonlinear Optics,” in Handbook of Liquid Crystals (Wiley-VCH Verlag GmbH & Co., 2014), pp. 453–473.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Operation principle of the optically switchable azo-LC PBS.
Fig. 2
Fig. 2 (a) Device configuration and definitions of parameters. Simulated transmittance and reflectance of the PBS as functions of the incident angle for azo-LC in the (b) nematic and (c) isotropic phases, respectively. The superscript shows the polarization state.
Fig. 3
Fig. 3 (a) Schematic of the experimental setup. Polar plots of measured transmittance and reflectance for azo-LC in the (b) nematic and (c) isotropic phases, respectively.
Fig. 4
Fig. 4 Time-resolved transmittance (Tout) and reflectance (Rout) of the PBS experiencing switching from polarization-splitting mode (PSM) to non-splitting mode (NSM) and the reverse, respectively: (a) P-wave / PSM→NSM, (b) S-wave / PSM→NSM, (c) P-wave / NSM→PSM, and (d) S-wave / NSM→PSM. (e) Absorption spectra of 1205 in the trans and cis states, respectively. (f) Dynamics of Tout and Rout in the 100th switching cycle: PSM→NSM (top), NSM→PSM (bottom).
Fig. 5
Fig. 5 Field-off stability of the non-splitting mode in ~3.4 hours upon 1 s-long exposure to 1 W/cm2 violet light, demonstrated using a P-polarized probe. The arrow points out the time at which the PSM→NSM switching was driven.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ c (P) < θ P/LC < θ c (S) .
n eff ( θ LC )= n o n e n e 2 cos 2 θ LC + n o 2 sin 2 θ LC .
T out ( j ) = T a ( j ) T b ( j ) T c ( j ) T d ( j ) ,
R out ( j ) = T a ( j ) R b ( j ) T e ( j ) ,
T (S) =( n t cos θ t n i cos θ i ) ( 2 n i cos θ i n i cos θ i + n t cos θ t ) 2 ;
R (S) = ( n i cos θ i n t cos θ t n i cos θ i + n t cos θ t ) 2 ;
T (P) = n t cos θ t n i cos θ i ( 2 n i cos θ i n i cos θ t + n t cos θ i ) 2 ;
R (P) = ( n t cos θ i n i cos θ t n i cos θ t + n t cos θ i ) 2 .

Metrics