Abstract

We demonstrate in this paper thermal poling of multi-wire array fibers, which extends poling of fibers with two anodes to ~50 and ~500 wire array anodes. The second harmonic microscopy observations show that second order nonlinearity (SON) layers are developed surrounding all the rings of wires in the ~50 anode array fiber with poling of 1.8kV, 250°C and 30min duration, and the outer rings of the ~500 anode array fiber at lower poling temperature. Our simulations based on a two-dimensional charge dynamics model confirm this can be explained by the self-adjustment mechanism, and show the SON layers are induced from the outer rings to the inner rings.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hindering effect of the core–cladding interface in thermally poled optical fibers

Lin Huang, Guobin Ren, Yixiao Gao, Bofeng Zhu, and Xiaomeng Sun
Appl. Opt. 54(18) 5771-5776 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  2. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
    [Crossref]
  3. A. Le Calvez, E. Freysz, and A. Ducasse, “Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica,” Opt. Lett. 22(20), 1547–1549 (1997).
    [Crossref] [PubMed]
  4. X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
    [Crossref]
  5. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [Crossref] [PubMed]
  6. W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
    [Crossref]
  7. P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5), 611–614 (1994).
    [Crossref]
  8. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
    [Crossref] [PubMed]
  9. H. An and S. Fleming, “Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations,” Opt. Express 20(7), 7436–7444 (2012).
    [Crossref] [PubMed]
  10. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
    [Crossref]
  11. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
    [PubMed]
  12. S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
    [Crossref]
  13. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
    [Crossref] [PubMed]
  14. S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
    [Crossref]
  15. A. Camara, O. Tarasenko, and W. Margulis, “Study of thermally poled fibers with a two-dimensional model,” Opt. Express 22(15), 17700–17715 (2014).
    [Crossref] [PubMed]
  16. L. Huang, G. Ren, and X. Sun, “Evolution of Two-dimensional Electric Field in Poled Twin-hole Optical Fiber,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), FTh2F.5.
  17. J. Hayashi, Wire Array Infrared Metamaterial Fibres: Fabrication and Applications, PhD, University of Sydney (2017) (A journal paper is in preparation)
  18. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  19. S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. Lond. A Math. Phys. Sci. 150(870), 322–337 (1935).
    [Crossref]
  20. H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
    [Crossref]
  21. H. An and S. Fleming, “Near-anode phase separation in thermally poled soda lime glass,” Appl. Phys. Lett. 88(18), 181106 (2006).
    [Crossref]
  22. F. De Lucia, D. Huang, C. Corbari, N. Healy, and P. J. A. Sazio, “Optical fiber poling by induction,” Opt. Lett. 39(22), 6513–6516 (2014).
    [Crossref] [PubMed]
  23. F. De Lucia, D. Huang, C. Corbari, N. Healy, and P. J. A. Sazio, “Optical fiber poling by induction: analysis by 2D numerical modeling,” Opt. Lett. 41(8), 1700–1703 (2016).
    [Crossref] [PubMed]

2017 (2)

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

2016 (1)

2014 (2)

2012 (2)

H. An and S. Fleming, “Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations,” Opt. Express 20(7), 7436–7444 (2012).
[Crossref] [PubMed]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

2010 (2)

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (1)

H. An and S. Fleming, “Near-anode phase separation in thermally poled soda lime glass,” Appl. Phys. Lett. 88(18), 181106 (2006).
[Crossref]

2004 (1)

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[Crossref]

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2001 (1)

W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
[Crossref]

1998 (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
[Crossref]

1997 (1)

1996 (1)

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

1994 (2)

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[Crossref] [PubMed]

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5), 611–614 (1994).
[Crossref]

1991 (1)

1935 (1)

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. Lond. A Math. Phys. Sci. 150(870), 322–337 (1935).
[Crossref]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
[Crossref]

An, H.

H. An and S. Fleming, “Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations,” Opt. Express 20(7), 7436–7444 (2012).
[Crossref] [PubMed]

H. An and S. Fleming, “Near-anode phase separation in thermally poled soda lime glass,” Appl. Phys. Lett. 88(18), 181106 (2006).
[Crossref]

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[Crossref]

Anthony, J.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Argyros, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

Atakaramians, S.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

Blazkiewicz, P.

W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
[Crossref]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
[Crossref]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Camara, A.

Corbari, C.

Cordi, J.

Cox, G.

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[Crossref]

De Lucia, F.

Dong, L.

Ducasse, A.

Fleming, S.

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

H. An and S. Fleming, “Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations,” Opt. Express 20(7), 7436–7444 (2012).
[Crossref] [PubMed]

H. An and S. Fleming, “Near-anode phase separation in thermally poled soda lime glass,” Appl. Phys. Lett. 88(18), 181106 (2006).
[Crossref]

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[Crossref]

W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
[Crossref]

Fleming, S. C.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Freysz, E.

Habib, M. S.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

Hayashi, J. G.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

Healy, N.

Huang, D.

Kazansky, P. G.

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[Crossref] [PubMed]

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5), 611–614 (1994).
[Crossref]

Kemsley, D.

Kuhlmey, B. T.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Le Calvez, A.

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Li, H.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

Liu, Z.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

Long, X. C.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

Lwin, R.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Margulis, W.

Mei, Y.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
[Crossref]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Myrén, N.

Russel, P. S. J.

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5), 611–614 (1994).
[Crossref]

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

Sazio, P. J. A.

Schmidt, O. G.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

Smith, E. J.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

Stefani, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

Tang, X.

S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, and R. Lwin, “Tunable metamaterials fabricated by fiber drawing,” J. Opt. Soc. Am. B 34(7), D81–D85 (2017).
[Crossref]

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

Tarasenko, O.

Tomotika, S.

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. Lond. A Math. Phys. Sci. 150(870), 322–337 (1935).
[Crossref]

Tuniz, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Xu, W.

W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
[Crossref]

Adv. Mater. (1)

W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fiber Poling Technology,” Adv. Mater. 13(12–13), 1014–1018 (2001).
[Crossref]

Appl. Phys. Lett. (3)

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[Crossref]

H. An and S. Fleming, “Near-anode phase separation in thermally poled soda lime glass,” Appl. Phys. Lett. 88(18), 181106 (2006).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

J. Infrared. Millim. Te. (1)

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-Drawn Metamaterial for THz Waveguiding and Imaging,” J. Infrared. Millim. Te. 39(8), 1162–1178 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2), 165–176 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vis. Exp. (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[PubMed]

Nano Lett. (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined Surface Plasmon and Classical Waveguiding through Metamaterial Fiber Design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5), 611–614 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. Lond. A Math. Phys. Sci. 150(870), 322–337 (1935).
[Crossref]

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (2)

L. Huang, G. Ren, and X. Sun, “Evolution of Two-dimensional Electric Field in Poled Twin-hole Optical Fiber,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), FTh2F.5.

J. Hayashi, Wire Array Infrared Metamaterial Fibres: Fabrication and Applications, PhD, University of Sydney (2017) (A journal paper is in preparation)

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1 time evolution of electric potential during poling
» Visualization 2       Visualization 2 time evolution of electric field during poling
» Visualization 3       Visualization 3 time evolution of Na during poling

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SH micrographs of the fiber poled at 210°C, 1.8kV for 30min. (a) SH signals and (b) overlay of images of the cross-section of the multi-hole array and SH signals. The inset in (b) shows the zoomed in SH signals around one wire.
Fig. 2
Fig. 2 SH micrographs of the fiber poled at 250°C, 1.8kV for 30min. (a) SH signals and (b) overlay of images of the cross-section of the multi-hole array and SH signals. The inset in (b) shows the zoomed in SH signals around one wire. Note that the tin (melting temperature ~232°C,) is liquid at poling temperature 250°C, potentially improving the continuity of the tin wires in the fiber.
Fig. 3
Fig. 3 (a) Cross-section of the ~500 wire fiber. After poling at 210°C, 1.8kV and 30min duration, only the outer wire rings are poled: the SH signal from (b) the upper part and (c) the left part of the poled ~500 wire fiber.
Fig. 4
Fig. 4 Initial distribution of the (a) electric potential and (b) electric field in the ~50 wire fiber. The electrodes are applied with 2000V electric potential. See Visualization 1 and Visualization 2 for time evolution of electric potential and electric field in the ~50 wire fiber during poling.
Fig. 5
Fig. 5 Profile of Na+ ions in the ~50 wire fiber at poling time (a) t = 60s, (b) t = 300s, (c) t = 600s, (d) t = 1200s. The poling temperature and voltage are 250°C and1.8kV, respectively. See Visualization 3 for time evolution of Na+ in the ~50 wire fiber during poling.

Metrics