Abstract

In this work, the optically anisotropic property of dual-frequency liquid crystals (DFLC) in terahertz (THz) regime has been experimentally investigated, which indicates that the refractive index and birefringence of DFLC can be continuously modulated by both the alternating frequency and intensity of the alternating electric field. This tunability originates from the rotation of DFLC molecules induced by alternating electric fields. The results show that by modulating the alternating frequency from 1 kHz to 100 kHz under 30 kV/m electric field, the 600 μm thickness DFLC cell can play as a tunable quarter-wave plate above 0.68 THz, or a half-wave plate above 1.33 THz. Besides, it can be viewed as a tunable THz phase shifter from 0 to π. Therefore, due to its novel tuning mechanism, DFLC will be of great significance in dynamic manipulating on THz phase and polarization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large birefringence liquid crystal material in terahertz range

Lei Wang, Xiao-wen Lin, Xiao Liang, Jing-bo Wu, Wei Hu, Zhi-gang Zheng, Biao-bing Jin, Yi-qiang Qin, and Yan-qing Lu
Opt. Mater. Express 2(10) 1314-1319 (2012)

Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field

Lei Yang, Fei Fan, Meng Chen, Xuanzhou Zhang, Jinjun Bai, and Shengjiang Chang
Opt. Mater. Express 6(9) 2803-2811 (2016)

Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate

Cho-Fan Hsieh, Ru-Pin Pan, Tsung-Ta Tang, Hung-Lung Chen, and Ci-Ling Pan
Opt. Lett. 31(8) 1112-1114 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terah. Sci.& Tech 1(1), 256–263 (2011).
    [Crossref]
  2. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  3. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  4. M. Shalaby, C. Vicario, K. Thirupugalmani, S. Brahadeeswaran, and C. P. Hauri, “Intense THz source based on BNA organic crystal pumped at Ti:sapphire wavelength,” Opt. Lett. 41(8), 1777–1780 (2016).
    [Crossref] [PubMed]
  5. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
    [Crossref] [PubMed]
  6. J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
    [Crossref] [PubMed]
  7. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref] [PubMed]
  8. S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
    [Crossref]
  9. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
    [Crossref] [PubMed]
  10. L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  11. S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
    [Crossref]
  12. S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
    [Crossref] [PubMed]
  13. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  14. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  15. L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
    [Crossref]
  16. R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
    [Crossref]
  17. L. Cattaneo, M. Savoini, I. Muševič, A. Kimel, and T. Rasing, “Ultrafast all-optical response of a nematic liquid crystal,” Opt. Express 23(11), 14010–14017 (2015).
    [Crossref] [PubMed]
  18. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
    [Crossref]
  19. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [Crossref] [PubMed]
  20. L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2026 (2017).
    [Crossref]
  21. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  22. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref] [PubMed]
  23. Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
    [Crossref] [PubMed]
  24. L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  25. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref] [PubMed]
  26. C. T. Wang, C. L. Wu, H. W. Zhang, T. H. Lin, and C. K. Lee, “Polarization-independent 2 pi phase modulation for Terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
    [Crossref]
  27. T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
    [Crossref]
  28. A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
    [Crossref]
  29. Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
    [Crossref]
  30. C. C. Chen, W. F. Chiang, M. C. Tsai, S. A. Jiang, T. H. Chang, S. H. Wang, and C. Y. Huang, “Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells,” Opt. Lett. 40(9), 2021–2024 (2015).
    [Crossref] [PubMed]
  31. T. Göbel, P. Meissner, A. Gaebler, M. Koeberle, S. Mueller, and R. Jakoby, “Dual-frequency switching liquid crystal based tunable THz filter,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThFF4.
    [Crossref]

2017 (7)

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref] [PubMed]

L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2026 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

2016 (5)

2015 (4)

2014 (3)

C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

2013 (1)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terah. Sci.& Tech 1(1), 256–263 (2011).
[Crossref]

2010 (2)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

2006 (1)

2005 (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

2003 (1)

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bai, J. J.

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Barat, R.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Brahadeeswaran, S.

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Cattaneo, L.

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chang, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Chang, S. J.

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Chang, T. H.

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, C. C.

Chen, C. Y.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]

Chen, H. L.

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, M.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Chen, P.

S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref] [PubMed]

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, P. H.

Chen, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chiang, W. F.

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cong, L. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Fan, F.

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Federici, J.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Gary, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Ge, S.

Ge, S. J.

Golovin, A. B.

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
[Crossref]

Gong, C.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Gu, J. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Han, J. G.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Hao, Q. Z.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Hauri, C. P.

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Hsieh, C. F.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

Hu, F. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Hu, W.

Huang, C. Y.

Huang, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, T. J.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Ji, Y. Y.

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Y. Y. Ji, F. Fan, M. Chen, L. Yang, and S. J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

Jiang, S. A.

Jin, B. B.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Kawatsuki, N.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Khoo, L. C.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Kimel, A.

Koch, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Lavrentovich, O. D.

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
[Crossref]

Lee, C. K.

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Liang, L. J.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Lin, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Lin, T. H.

Lin, X. W.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Liou, J.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Liu, W.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Lu, Y.

Lu, Y. N.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y. Q.

Lu, Y.-Q.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Mikulics, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Muševic, I.

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nagatsuma, T.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terah. Sci.& Tech 1(1), 256–263 (2011).
[Crossref]

Nakajima, M.

Noda, K.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Okamoto, H.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Okuyama, H.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Oliveira, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ono, H.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Pan, C. L.

Pan, R. P.

Qian, H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Qin, Y. Q.

Rasing, T.

Sakamoto, M.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Sasaki, T.

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

Savoini, M.

Scherger, B.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Schulkin, B.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Shalaby, M.

Shao, G. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shen, Z.

Shiyanovskii, S. V.

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Singh, R. J.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Smalley, J. S. T.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Song, H. J.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terah. Sci.& Tech 1(1), 256–263 (2011).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Sun, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Sun, W.

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tang, T. T.

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Thirupugalmani, K.

Tsai, M. C.

Vicario, C.

Vieweg, N.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Wang, C. T.

Wang, L.

Wang, S. H.

Wang, X.

Wu, C. L.

Wu, J. B.

Wu, P.

Wu, P. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Xu, N. N.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, S. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Yang, C. S.

Yang, J.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Yang, L.

Yu, P.

Zhang, H.

Zhang, H. W.

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Zhang, W. L.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Zhang, X. Z.

Zhang, Y.

Zheng, Z. G.

Zheng, Z.-G.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zimdars, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ann. Phys. (1)

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Appl. Phys. Lett. (4)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

S. T. Xu, F. Fan, M. Chen, Y. Y. Ji, and S. J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett. 83(19), 3864–3866 (2003).
[Crossref]

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, L. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

IEEE Trans. Terah. Sci.& Tech (1)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terah. Sci.& Tech 1(1), 256–263 (2011).
[Crossref]

J. Appl. Phys. (2)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]

T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves 31(11), 1312–1320 (2010).
[Crossref]

Laser Photonics Rev. (1)

L. Q. Cong, N. N. Xu, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter‐wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nanoscale (1)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (4)

Phys. Rev. Lett. (1)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (1)

T. Göbel, P. Meissner, A. Gaebler, M. Koeberle, S. Mueller, and R. Jakoby, “Dual-frequency switching liquid crystal based tunable THz filter,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThFF4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Sample of the DFLC cell. (b) The cross-section and geometric parameters of DFLC cell. Schematic diagram when (c) the polarization direction is parallel to the electric field direction and (d) the polarization direction is orthogonal to the electric field direction.
Fig. 2
Fig. 2 (a) Time-domain signals of air, blank cell, DP002-016, −026 and −122 without electric field. (b) Transmission spectra of blank cell and three DFLC cells. (c) The refractive index and (d) the absorption coefficient of three DFLC.
Fig. 3
Fig. 3 Measured (a) x-polarized and (b) y-polarized time-domain signals of the DFLC (DP002-016) cells under the alternating electric field of different alternating frequencies and their corresponding refractive index (c) nx & (d) ny, and extinction coefficient (e) κx & (f) κy.
Fig. 4
Fig. 4 (a) Group refractive index curves of with the increase of the fM. The black line is the curve of group refractive index for the y-polarized wave ngy and the red one is ngx. Schematic diagram of the alignment of DFLC molecules and refractive index ellipsoid of DP002-016 at 1 THz under the alternating electric field of (b) 1 kHz and (c) 100 kHz.
Fig. 5
Fig. 5 (a) The birefringence and of the DFLC cell when the fM is 100 kHz and 1 kHz. (b) The phase difference between the two orthogonal states of polarization. (c) The refractive index difference and (d) the phase shift of the sample under the same polarization state when the alternating frequency is 100 kHz and 1 kHz.
Fig. 6
Fig. 6 Group refractive index curves of DP002-016 with the electric field intensity increasing. The black line is the curve of group refractive index for the y-polarized wave ngy and the red one is ngx.
Fig. 7
Fig. 7 The refractive index nx and ny of (a) (b) DP002-026 and (c) (d) DP002-122 under the alternating electric field of different alternating frequencies.
Fig. 8
Fig. 8 Group refractive index curves of (a) DP002-026 and (b) DP002-122 with the increase of the fM.
Fig. 9
Fig. 9 Group refractive index curves of (a) DP002-026 and (b) DP002-122 with the electric field intensity increasing.

Tables (1)

Tables Icon

Table 1 Physical properties of the DFLC

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(ω)=1+ cΔδ(ω) ωd
κ(ω)= ln( t(ω) [n(ω)+1] 2 4n(ω) )c ωd ,α(ω)= 2ωκ(ω) c
n g = ( T s T r )c d +1

Metrics