Abstract

Near-field coupling is a fundamental physical effect, which plays an important role in the establishment of classical analog of electromagnetically induced transparency (EIT). However, in a normal environment the coupling length between the bright and dark artificial atoms is very short and far less than one wavelength, owing to the exponentially decaying property of near fields. In this work, we report the realization of a long range EIT, by using a hyperbolic metamaterial (HMM) which can convert the near fields into high-k propagating waves to overcome the problem of weak coupling at long distance. Both simulation and experiment show that the coupling length can be enhanced by nearly two orders of magnitude with the aid of a HMM. This long range EIT might be very useful in a variety of applications including sensors, detectors, switch, long-range energy transfer, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range

Tian Ma, Qiuping Huang, Hongchuan He, Yi Zhao, XIaoxia Lin, and Yalin Lu
Opt. Express 27(12) 16624-16634 (2019)

Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  2. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
    [Crossref] [PubMed]
  3. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
    [Crossref]
  4. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  5. J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
    [Crossref] [PubMed]
  6. P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
    [Crossref] [PubMed]
  7. K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
    [Crossref]
  8. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105(6), 067402 (2010).
    [Crossref] [PubMed]
  9. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
    [Crossref]
  10. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
    [Crossref] [PubMed]
  11. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  12. K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
    [Crossref] [PubMed]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  15. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  16. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
    [Crossref] [PubMed]
  17. L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  18. C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
    [Crossref] [PubMed]
  19. E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
    [Crossref]
  20. C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
    [Crossref]
  21. I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
    [Crossref] [PubMed]
  22. H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
    [Crossref]
  23. S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
    [Crossref] [PubMed]
  24. S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
    [Crossref] [PubMed]
  25. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
    [Crossref] [PubMed]
  26. P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
    [Crossref]
  27. S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
    [Crossref]
  28. R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
    [Crossref]
  29. C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8, 14144 (2017).
    [Crossref] [PubMed]
  30. D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
    [Crossref] [PubMed]
  31. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  32. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  33. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  34. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref] [PubMed]
  35. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
    [Crossref] [PubMed]
  36. B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013).
    [Crossref] [PubMed]
  37. A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
    [Crossref]
  38. S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
    [Crossref]
  39. W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
    [Crossref]
  40. Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
    [Crossref]
  41. Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
    [Crossref] [PubMed]
  42. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  43. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
    [Crossref]
  44. S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
    [Crossref]
  45. A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
    [Crossref]
  46. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]

2017 (2)

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8, 14144 (2017).
[Crossref] [PubMed]

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

2016 (9)

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

2015 (7)

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

2014 (7)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

2013 (6)

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

2012 (4)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

2011 (2)

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

2010 (3)

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105(6), 067402 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Agarwal, G. S.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Alekseyev, L. V.

Alu, A.

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

Alù, A.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

Amirhosseini, M. M.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Andryieuski, A.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Antezza, M.

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

Argyropoulos, C.

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Ben-Abdallah, P.

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

Bhattacharya, A.

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

Biehs, S.-A.

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Bouchet, D.

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Campione, S.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Cao, D.

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

Capolino, F.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Carminati, R.

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

Chen, H.

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Chen, P. Y.

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

Chshelokova, A. V.

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Cortes, C. L.

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8, 14144 (2017).
[Crossref] [PubMed]

Cummer, S. A.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

De Wilde, Y.

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Estakhri, N. M.

Ferrari, L.

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

Fullerton, E. E.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Ginzburg, P.

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Gómez Rivas, J.

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

Guclu, C.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Guizal, B.

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

Guo, Z. W.

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

Hajizadegan, M.

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

Halpin, A.

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Iorsh, I. V.

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

Jacob, Z.

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8, 14144 (2017).
[Crossref] [PubMed]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Jha, P. K.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

Jiang, H. T.

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Jing, Y.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Kafesaki, M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

Kan, J. J.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kim, J.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

Kipp, T.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Korn, T.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Krachmalnicoff, V.

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Kruk, S. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lavrinenko, A. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, H. Q.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Li, J.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Liu, Z. W.

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Lu, D.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013).
[Crossref] [PubMed]

Mendach, S.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Mennes, C.

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

Menon, V. M.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Messina, R.

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Monticone, F.

Mrejen, M.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105(6), 067402 (2010).
[Crossref] [PubMed]

Neshev, D. N.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Ni, X.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Nordlander, P.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

O’Brien, K.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Petrov, A. Yu.

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poddubny, A. N.

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pshenay-Severin, E.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Rostovtsev, Y. V.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

Rottler, A.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Sakhdari, M.

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

Salandrino, A.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Schulz, K. M.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Schwaiger, S.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Sedighy, S. H.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Shen, C.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Shen, H.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Siegfried, T.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Sigg, H.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Sipe, J. E.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Slobozhanyuk, A. P.

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Smolyaninov, I. I.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105(6), 067402 (2010).
[Crossref] [PubMed]

Sonnenberg, D.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Sui, N.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Tan, W.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Tymchenko, M.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

VanSaders, B.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Vu, H.

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

Wang, W.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Wang, Y.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z. G.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Wong, Z. J.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Wu, C.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Wu, C. H.

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wurtz, G. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Xie, Y.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, H. X.

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

Yang, Y. P.

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Yu, K.

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

Zayats, A. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, Y. W.

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Zhu, S. Y.

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Zhukovsky, S. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

ACS Nano (1)

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

A. Halpin, C. Mennes, A. Bhattacharya, and J. Gómez Rivas, “Visualizing near-field coupling in terahertz dolmens,” Appl. Phys. Lett. 110(10), 101105 (2017).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microw. Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

J. Appl. Phys. (2)

A. V. Chshelokova, P. V. Kapitanova, A. N. Poddubny, D. S. Filonov, A. P. Slobozhanyuk, Y. S. Kivshar, and P. A. Belov, “Hyperbolic transmission-line metamaterials,” J. Appl. Phys. 112(7), 073116 (2012).
[Crossref]

K. Yu, Z. W. Guo, H. T. Jiang, and H. Chen, “Loss-induced topological transition of dispersion in metamaterials,” J. Appl. Phys. 119(20), 203102 (2016).
[Crossref]

Nano Converg (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Nano Lett. (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the ångström scale with visible light,” Nano Lett. 13(2), 497–503 (2013).
[Crossref] [PubMed]

Nat. Commun. (4)

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8, 14144 (2017).
[Crossref] [PubMed]

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nature (1)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Appl. (1)

P. Y. Chen, M. Hajizadegan, M. Sakhdari, and A. Alu, “Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunneling regime,” Phys. Rev. Appl. 5(4), 041001 (2016).
[Crossref]

Phys. Rev. B (5)

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A. Biehs, “Hyperbolic waveguide for long-distance transport of near-field heat flux,” Phys. Rev. B 94(10), 104301 (2016).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011).
[Crossref]

Y. Sun, H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, “Electromagnetically induced transparency in metamaterials: influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Phys. Rev. Lett. (13)

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

S.-A. Biehs, S. Lang, A. Yu. Petrov, M. Eich, and P. Ben-Abdallah, “Blackbody theory for hyperbolic materials,” Phys. Rev. Lett. 115(17), 174301 (2015).
[Crossref] [PubMed]

D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff, “Long-range plasmon-assisted energy transfer between fluorescent emitters,” Phys. Rev. Lett. 116(3), 037401 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, and Y. S. Kivshar, “Compton-like polariton scattering in hyperbolic metamaterials,” Phys. Rev. Lett. 114(18), 185501 (2015).
[Crossref] [PubMed]

K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, “Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials,” Phys. Rev. Lett. 117(8), 085503 (2016).
[Crossref] [PubMed]

I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett. 105(6), 067402 (2010).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, “Coherence-driven topological transition in quantum metamaterials,” Phys. Rev. Lett. 116(16), 165502 (2016).
[Crossref] [PubMed]

Phys. Rev. X (3)

H. Shen, D. Lu, B. VanSaders, J. J. Kan, H. X. Xu, E. E. Fullerton, and Z. W. Liu, “Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials,” Phys. Rev. X 5(2), 021021 (2015).
[Crossref]

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. H. Wu, D. Lepage, X. Zhang, and Z. W. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of a long range EIT in a three-level system. This general model considers both near-field coupling and converted-far-field coupling between bright and dark atoms.
Fig. 2
Fig. 2 Microwave transmission-line system. (a) The coupling strength decreases exponentially with the increase of distance. The structure and related parameters are shown in the inset. (b) Analytical calculated (solid lines) and simulated (scattered open dots) transmittance spectra as the function of s . (c) The background color gives analytical outgoing transmittance spectra T for different s . The red open (blue solid) circles are the measured (simulated) split frequencies. (d, e) The 2D electric field distributions when s = 0.2 and 5 mm, respectively.
Fig. 3
Fig. 3 (a) The structure and the related anisotropic 2D-circuit model of microwave HMM. (b) The effective parameters based on the TLs. μ y = 81 and μ y = 1 are marked by the red and blue dots, respectively. (c) The IFCs of the ENP-HMM are two flat lines (red line).For comparison, the IFCs of a general HMM are also given (blue line). The wave vectors (group velocity) are shown by the black (green) arrows. For the complex dispersions, Re k y ( Im k y ) is shown by solid (dashed) line.
Fig. 4
Fig. 4 Schematic of the structure to realize a long range EIT. Bright atom, dark atom and the unit of HMM are enlarged in the left, respectively.
Fig. 5
Fig. 5 The spectra of R , T and A from the model (dashed lines) and from the simulations (solid lines).With the aid of HMM, EIT can be well reestablished when the distance of bright and dark atoms is much larger than the normal near-field coupling distance. The EIT spectra is still seen when the distance between two atoms reaches 60 mm.
Fig. 6
Fig. 6 The system (left column) with long-range EIT and that (right column) without long-range EIT. (a) The transmission line with C = 0.1 pF mimics the ENP-HMM. (b), (f) The transmission spectra when s = 60 and 135 mm, respectively. (e) The transmission line with C = 30 pF mimics a normal material. (c), (d) The field distributions corresponding to the EIT peaks in (b). (g), (h) The field distributions corresponding to the transmission dips in (f).
Fig. 7
Fig. 7 The measured transmittance, reflectance and absorbance spectra of bright atom (a) and a molecule (c), respectively. The measured 2D electric field distributions of bright atom (b) and a molecule (d) at 0.806 GHz, respectively [marked by a dashed line in (a) or (c)].
Fig. 8
Fig. 8 (a) The dependence of Re ( φ ) (red solid line) and Im ( φ ) (black open circles) on s . (b) The dependence of HMM-mediated EIT on s . The background color gives analytical outgoing transmittance spectra T for different s . Different dashed color lines denote different separations. The red open (blue solid) circles are the measured (simulated) EIT split frequencies.
Fig. 9
Fig. 9 (a) Effective parameters based on the TLs. The reference frequency is marked by the black dashed line. (b) The IFC of the designed general HMM is a standard hyperbola, where the asymptote represented by red dashed lines. (c) Simulated reflectance spectra of a single bright atom (black solid line) and a molecule (red dotted line) in the general HMM, respectively. The position of transparent window is marked by the purple arrow. (d) Simulated 2D electric field of the molecule at 0.8GHz. The main pathways of energy in the general HMM are marked by white dashed lines.
Fig. 10
Fig. 10 Collimated electric field (a) and magnetic field (b) pattern when a point source is put at the center of the HMM. The parameters of the HMM are the same as those in Fig. 3(b) for μ y = 81 .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d a ˜ 1 d t = ( i ω 1 Γ 1 γ 1 ) a ˜ 1 + i γ 1 S ˜ i n + i ( κ + i γ 1 γ 2 e i φ ) a ˜ 2 d a ˜ 2 d t = ( i ω 2 Γ 2 γ 2 ) a ˜ 2 + i ( κ + i γ 1 γ 2 e i φ ) a ˜ 1 ,
T = | 1 + γ 1 [ i ( ω ω 2 ) + Γ 2 + γ 2 ] [ i ( ω ω 1 ) + Γ 1 + γ 1 ] [ i ( ω ω 2 ) + Γ 2 + γ 2 ] + ( κ + i γ 1 γ 2 e i φ ) 2 | 2 .
T = | 1 + γ 1 [ i ( ω ω 2 ) + Γ 2 + γ 2 ] [ i ( ω ω 1 ) + Γ 1 + γ 1 ] [ i ( ω ω 2 ) + Γ 2 + γ 2 ] + κ 2 | 2 .
k x 2 μ y + k y 2 μ x = ε k 0 2 .
ε = 2 C 0 g ε 0 , μ x = L 0 g μ 0 , μ y = L 0 g μ 0 1 ω 2 C p g μ 0 ,
Im ε = Re ε Tan θ 2 + Re ε Tan θ 2 ( 1 + 12 h w ) 1 2 .
Im μ y = 1 μ 0 R c ω p g ,
φ = k y s = ε μ x k 0 s ,
R = ( 1 T ) 2 ,

Metrics