Abstract

We propose and demonstrate a scalable mode division multiplexing scheme based on orbital angular momentum modes in ring core fibers. In this scheme, the high-order mode groups of a ring core fiber are sufficiently de-coupled by the large differential effective refractive index so that multiple-input multiple-output (MIMO) equalization is only used for crosstalk equalization within each mode group. We design and fabricate a graded-index ring core fiber that supports 5 mode groups with low inter-mode-group coupling, small intra-mode-group differential group delay, and small group velocity dispersion slope over the C-band for the high-order mode groups. We implement a two-dimensional wavelength- and mode-division multiplexed transmission experiment involving 10 wavelengths and 2 mode groups each with 4 OAM modes, transmitting 32 GBaud Nyquist QPSK signals over all 80 channels. An aggregate capacity of 5.12 Tb/s and an overall spectral efficiency of 9 bit/s/Hz over 10 km are realized, only using modular 4x4 MIMO processing with 15 taps to recover signals from the intra-mode-group mode coupling. Given the fixed number of modes in each mode group and the low inter-mode-group coupling in ring core fibres, our scheme strikes a balance in the trade-off between system capacity and digital signal processing complexity, and therefore has good potential for capacity upscaling at an expense of only modularly increasing the number of mode-groups with fixed-size (4x4) MIMO blocks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

Junwei Zhang, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu
Opt. Express 26(4) 4243-4257 (2018)

Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission

Andong Wang, Long Zhu, Lulu Wang, Jianzhou Ai, Shi Chen, and Jian Wang
Opt. Express 26(8) 10038-10047 (2018)

Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber

Andong Wang, Long Zhu, Shi Chen, Cheng Du, Qi Mo, and Jian Wang
Opt. Express 24(11) 11716-11726 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
    [Crossref]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
    [Crossref]
  4. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  5. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benıtez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode Mode-Multiplexed Transmission over 125km Single-Span Multimode Fiber,” Proc. ECOC, PDP3.3 (2015).
  6. B. Franz and H. Bülow, “Mode Group Division Multiplexing in Graded-Index Multimode Fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
    [Crossref]
  7. F. Feng, X. Guo, G. S. Gordon, X. Jin, F. Payne, Y. Jung, Q. Kang, S. Alam, P. Barua, J. Sahu, D. J. Richardson, I. H. White, and T. D. Wilkinson, “All-optical mode-group division multiplexing over a graded-index ring-core fiber with single radial mode,” Proc. OFC, W3D.5 (2016).
    [Crossref]
  8. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, “Design of three-spatial-mode ring-core fiber,” J. Lightwave Technol. 32(7), 1337–1343 (2014).
    [Crossref]
  9. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  10. R. M. Nejad, K. Allahverdyan, P. Vaity, S. Amiralizadeh, C. Brunet, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Orbital angular momentum mode division multiplexing over 1.4 km RCF fiber,” Proc. CLEO, SW4F.3 (2016).
  11. K. Ingerslev, P. Gregg, M. Galili, F. D. Ros, H. Hu, F. Bao, M. A. U. Castaneda, P. Kristensen, A. Rubano, L. Marrucci, S. Ramachandran, K. K. Rottwitt, Y. Morioka, and L. K. Oxenlowe, “12 Mode, MIMO-free OAM transmission,” Proc. OFC, M2D.1 (2017).
    [Crossref]
  12. D. Gloge and E. A. J. Marcatili, “Impulse Response of Fibers with Ring-Shaped Parabolic Index Distribution,” Bell Labs Tech. J. 52(7), 1161–1168 (1973).
    [Crossref]
  13. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  14. P. Gregg, P. Kristensen, and S. Ramachandran, “13.4km OAM state propagation by recirculating fiber loop,” Opt. Express 24(17), 18938–18947 (2016).
    [Crossref] [PubMed]
  15. C. Koebele, M. Salsi, L. Milord, R. Ryf, C. A. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb/s with Low MIMO-DSP Complexity,” Proc. ECOC, Th.13.C.3 (2011).
    [Crossref]
  16. C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
    [Crossref]
  17. D. Soma, Y. Wakayama, K. Igarashi, T. Tsuritani, “Weakly-coupled FMF transmission for reduction of MIMO complexity,” IEEE Summer Topical, TuE2.2 (2016).
    [Crossref]
  18. D. Soma, Y. Wakayama, K. Igarashi, and T. Tsuritani, “Partial MIMO-based 10-Mode-Multiplexed Transmission over 81km Weakly-coupled Few-mode Fiber,” Proc. OFC, M2D.4 (2017).
    [Crossref]
  19. D. Soma, S. Beppu, Y. Wakayama, Y. Kawaguchi, K. Igarashi, and T. Tsuritani, “257-Tbit/s Partial MIMO-based 10-Mode C+L-band WDM Transmission over 48-km FMF,” Proc. ECOC, M.2.E.3 (2017).
  20. K. Shi, Y. Jung, Z. S. Eznaveh, J. C. A. Zacarias, J. E. Antonio-Lopez, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, R. A. Correa, D. J. Richardson, and B. Thomsen, “10×10 MDM Transmission over 24 km of Ring-Core Fibre using Mode Selective Photonic Lanterns and Sparse Equalization,” Proc. ECOC, M.2.E.2 (2017).
  21. K. Balemarthy, A. Polley, and S. E. Ralph, “Electronic equalization of multikilometer 10-Gb/s multimode fiber links: Mode-coupling effects,” J. Lightwave Technol. 24(12), 4885–4894 (2006).
    [Crossref]
  22. X. Jin, A. Gomez, K. Shi, B. C. Thomsen, F. Feng, G. S. D. Gordon, T. D. Wilkinson, Y. Jung, Q. Kang, P. Barua, J. Sahu, S. Alam, D. J. Richardson, D. C. O’Brien, and F. P. Payne, “Mode Coupling Effects in Ring-Core Fibers for Space-Division Multiplexing Systems,” J. Lightwave Technol. 34(14), 3365–3372 (2016).
    [Crossref]
  23. D. Marcuse, “Microdeformation losses of single-mode fibers,” Appl. Opt. 23(7), 1082 (1984).
    [Crossref] [PubMed]
  24. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
    [Crossref] [PubMed]
  25. R. Murayama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode coupling and fiber characteristics in few-mode fibers analyzed using impulse response measurement technique,” J. Lightwave Technol. 35(4), 650–657 (2017).
    [Crossref]
  26. F. Feng, X. Jin, D. O’Brien, F. Payne, Y. Jung, Q. Kang, P. Barua, J. K. Sahu, S. U. Alam, D. J. Richardson, and T. D. Wilkinson, “All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode,” Opt. Express 25(12), 13773–13781 (2017).
    [Crossref] [PubMed]
  27. L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012).
    [Crossref] [PubMed]
  28. J. L. Rebola and A. V. T. Cartaxo, “Q-factor estimation and impact of spontaneous-spontaneous beat noise on the performance of optically preamplified systems with arbitrary optical filtering,” J. Lightwave Technol. 21(1), 87–95 (2003).
    [Crossref]
  29. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (1)

2014 (4)

2013 (3)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

B. Franz and H. Bülow, “Mode Group Division Multiplexing in Graded-Index Multimode Fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

2006 (1)

2003 (1)

1984 (1)

1973 (1)

D. Gloge and E. A. J. Marcatili, “Impulse Response of Fibers with Ring-Shaped Parabolic Index Distribution,” Bell Labs Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Alam, S.

Alam, S. U.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
[Crossref]

Balemarthy, K.

Barua, P.

Bigot, L.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Bigot-Astruc, M.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Bolle, C. A.

Boutin, A.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

Bülow, H.

B. Franz and H. Bülow, “Mode Group Division Multiplexing in Graded-Index Multimode Fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

Cartaxo, A. V. T.

Charlet, G.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Denolle, B.

Du, L. B.

Essiambre, R. J.

Feng, F.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Franz, B.

B. Franz and H. Bülow, “Mode Group Division Multiplexing in Graded-Index Multimode Fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

Genevaux, P.

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref] [PubMed]

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Gloge, D.

D. Gloge and E. A. J. Marcatili, “Impulse Response of Fibers with Ring-Shaped Parabolic Index Distribution,” Bell Labs Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Gnauck, A. H.

Golowich, S. E.

Gomez, A.

Gordon, G. S. D.

Gregg, P.

Hanzawa, N.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Jian, P.

Jin, X.

Jung, Y.

Kang, Q.

Kasahara, M.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Kristensen, P.

Kuwaki, N.

Labroille, G.

LaRochelle, S.

Le Cocq, G.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
[Crossref]

Lingle, R.

Lowery, A. J.

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Impulse Response of Fibers with Ring-Shaped Parabolic Index Distribution,” Bell Labs Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Marcuse, D.

Matsui, T.

Matsuo, S.

McCurdy, A.

Messaddeq, Y.

Morizur, J. F.

Murayama, R.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

O’Brien, D.

O’Brien, D. C.

Ohashi, M.

Payne, F.

Payne, F. P.

Peckham, D. W.

Polley, A.

Quiquempois, Y.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Ralph, S. E.

Ramachandran, S.

Randel, S.

Rebola, J. L.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Richardson, D. J.

Rusch, L. A.

Ryf, R.

Sahu, J.

Sahu, J. K.

Saitoh, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, “Design of three-spatial-mode ring-core fiber,” J. Lightwave Technol. 32(7), 1337–1343 (2014).
[Crossref]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Sakamoto, T.

Shi, K.

Sierra, A.

Sillard, P.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Simonneau, C.

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

Thomsen, B. C.

Treps, N.

Tsujikawa, K.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Vaity, P.

Wilkinson, T. D.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Winzer, P. J.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
[Crossref]

Yamamoto, F.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413 (2014).
[Crossref]

Appl. Opt. (1)

Bell Labs Tech. J. (2)

B. Franz and H. Bülow, “Mode Group Division Multiplexing in Graded-Index Multimode Fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

D. Gloge and E. A. J. Marcatili, “Impulse Response of Fibers with Ring-Shaped Parabolic Index Distribution,” Bell Labs Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principles,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (7)

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, and S. Ramachandran, “13.4km OAM state propagation by recirculating fiber loop,” Opt. Express 24(17), 18938–18947 (2016).
[Crossref] [PubMed]

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref] [PubMed]

F. Feng, X. Jin, D. O’Brien, F. Payne, Y. Jung, Q. Kang, P. Barua, J. K. Sahu, S. U. Alam, D. J. Richardson, and T. D. Wilkinson, “All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode,” Opt. Express 25(12), 13773–13781 (2017).
[Crossref] [PubMed]

L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012).
[Crossref] [PubMed]

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (10)

R. M. Nejad, K. Allahverdyan, P. Vaity, S. Amiralizadeh, C. Brunet, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Orbital angular momentum mode division multiplexing over 1.4 km RCF fiber,” Proc. CLEO, SW4F.3 (2016).

K. Ingerslev, P. Gregg, M. Galili, F. D. Ros, H. Hu, F. Bao, M. A. U. Castaneda, P. Kristensen, A. Rubano, L. Marrucci, S. Ramachandran, K. K. Rottwitt, Y. Morioka, and L. K. Oxenlowe, “12 Mode, MIMO-free OAM transmission,” Proc. OFC, M2D.1 (2017).
[Crossref]

R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benıtez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode Mode-Multiplexed Transmission over 125km Single-Span Multimode Fiber,” Proc. ECOC, PDP3.3 (2015).

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. A. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb/s with Low MIMO-DSP Complexity,” Proc. ECOC, Th.13.C.3 (2011).
[Crossref]

C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, and G. Charlet, “5-mode Amplifier with Low Modal Crosstalk for Spatial Mode Multiplexing Transmission with Low Signal Processing Complexity,” Proc. ECOC, We.2.4.2 (2015).
[Crossref]

D. Soma, Y. Wakayama, K. Igarashi, T. Tsuritani, “Weakly-coupled FMF transmission for reduction of MIMO complexity,” IEEE Summer Topical, TuE2.2 (2016).
[Crossref]

D. Soma, Y. Wakayama, K. Igarashi, and T. Tsuritani, “Partial MIMO-based 10-Mode-Multiplexed Transmission over 81km Weakly-coupled Few-mode Fiber,” Proc. OFC, M2D.4 (2017).
[Crossref]

D. Soma, S. Beppu, Y. Wakayama, Y. Kawaguchi, K. Igarashi, and T. Tsuritani, “257-Tbit/s Partial MIMO-based 10-Mode C+L-band WDM Transmission over 48-km FMF,” Proc. ECOC, M.2.E.3 (2017).

K. Shi, Y. Jung, Z. S. Eznaveh, J. C. A. Zacarias, J. E. Antonio-Lopez, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, R. A. Correa, D. J. Richardson, and B. Thomsen, “10×10 MDM Transmission over 24 km of Ring-Core Fibre using Mode Selective Photonic Lanterns and Sparse Equalization,” Proc. ECOC, M.2.E.2 (2017).

F. Feng, X. Guo, G. S. Gordon, X. Jin, F. Payne, Y. Jung, Q. Kang, S. Alam, P. Barua, J. Sahu, D. J. Richardson, I. H. White, and T. D. Wilkinson, “All-optical mode-group division multiplexing over a graded-index ring-core fiber with single radial mode,” Proc. OFC, W3D.5 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Block diagram of the proposed scalable MDM scheme utilizing high order OAM modes in GIRCF. LO: local oscillator; DSP i : digital signal processing module for the ith OAM mode group including OAM modes < ± i, ± s> (i = l, … n, in which l >1; ± i being the azimuthal mode order and ± s being the left- or right-hand circular polarizations).
Fig. 2
Fig. 2 (a) Measured RI distribution and (c) cross-sectional diagram of the fabricated GIRCF; calculated (b) effective refractive indices and (d) GVD characteristics of the guided mode groups as a function of wavelength.
Fig. 3
Fig. 3 Calculated and measured DGD of all mode groups in GIRCF at 1550 nm.
Fig. 4
Fig. 4 Experiment setup. ECL: external cavity laser; WDM: wavelength division multiplexer; EDFA: erbium-doped fiber amplifier; PC: polarization controller; OC: optical coupler; SMF: single-mode fiber; LP: linear polarizer; SLM: spatial light modulator; PBS: polarizing beam splitter; HWP: half-wave plate; MR: mirror; QWP: quarter-wave plate; Col.: collimator; BS: beam splitter; VPP: vortex phase plate; ATN: attenuator; ASE: amplified spontaneous emission noise; OC: optical coupler; OTF: optical tunable filter; ICR: integrated coherent receiver.
Fig. 5
Fig. 5 The absolute values of complex tap weights of the four FIR filters to equalize the four modes in mode group (a) |l| = 4 and (b) |l| = 5.
Fig. 6
Fig. 6 (a) BER vs. OSNR at wavelength of 1549.71 nm after 10-km GIRCF transmission, and (b) constellations of the received signals with the best measured BERs at wavelength of 1549.71 nm after 10-km GIRCF transmission.
Fig. 7
Fig. 7 (a) Measured BERs of all 80 channels after 10-km GIRCF transmission; (b) Observed intensity profiles of multiplexed modes from groups |l| = 4, 5 after 10-km GIRCF transmission; (c) Optical spectra of all the 10 wavelength channels.

Tables (1)

Tables Icon

Table 1 The in-fiber effects induced crosstalk of high-order OAM MGs (|l| = 3, 4 and 5) over 9.8-km GIRCF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n max 1 δ [ 2 ( R r ) W ] α
δ = n max 2 n min 2 n max 2

Metrics