Abstract

The present paper proposes a method to estimate the bispectral Donaldson matrices of fluorescent objects in a scene with a spectral imaging system. Multiple ordinary light sources with continuous spectral-power distributions are projected sequentially onto object surfaces without controlling the spectral shape of the illumination source. The estimation problem of the Donaldson matrices is solved as an optimization problem, where the residual error of observations by the spectral imaging system is minimized. The reflection, emission, and excitation spectral functions are estimated at each wavelength without using a basis function approximation. To improve the estimation efficiency, the output visible range is segmented into two types of wavelength ranges: one for only reflection and another for both reflection and emission. An iterative algorithm is then developed based on the wavelength segmentation and the physical excitation model. The usefulness of the proposed method is examined in experiments using different fluorescent objects and illuminants. We show the estimation accuracy of the Donaldson matrices, discuss the effective selection of illuminants, and demonstrate an application to spectral analysis and reconstruction of a fluorescent image.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of bispectral Donaldson matrices of fluorescent objects by using two illuminant projections

Shoji Tominaga, Keita Hirai, and Takahiko Horiuchi
J. Opt. Soc. Am. A 32(6) 1068-1078 (2015)

Spectral image analysis of mutual illumination between florescent objects

Shoji Tominaga, Keiji Kato, Keita Hirai, and Takahiko Horiuchi
J. Opt. Soc. Am. A 33(8) 1476-1487 (2016)

Recovering fluorescent spectra with an RGB digital camera and color filters using different matrix factorizations

Juan L. Nieves, Eva M. Valero, Javier Hernández-Andrés, and Javier Romero
Appl. Opt. 46(19) 4144-4154 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Donaldson, “Spectrophotometry of fluorescent pigments,” Br. J. Appl. Phys. 5(6), 210–214 (1954).
    [Crossref]
  2. D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Res. Appl. 19(6), 427–436 (1994).
    [Crossref]
  3. CIE, “Calibration methods and photo-luminescent standards for total radiance factor measurements,” CIE 182:2007, Commission Internationale de l'Eclairage, Vienna (2007).
  4. E. Fuchs, “Separating the fluorescence and reflectance components of coral spectra,” Appl. Opt. 40(21), 3614–3621 (2001).
    [Crossref] [PubMed]
  5. A. Lam and I. Sato, “Spectral modeling and relighting of reflective-fluorescent scenes,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 1452–1459.
    [Crossref]
  6. Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
    [Crossref]
  7. Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
    [Crossref] [PubMed]
  8. Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
    [Crossref]
  9. H. Blasinski, J. Farrell, and B. Wandell, “Simultaneous surface reflectance and fluorescence spectra estimation,” arXiv:1605.04243 (2016).
  10. J. Suo, L. Bian, F. Chen, and Q. Dai, “Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance,” Opt. Express 22(2), 1697–1712 (2014).
    [Crossref] [PubMed]
  11. S. Tominaga, K. Hirai, and T. Horiuchi, “Estimation of bispectral Donaldson matrices of fluorescent objects by using two illuminant projections,” J. Opt. Soc. Am. A 32(6), 1068–1078 (2015).
    [Crossref] [PubMed]
  12. S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
    [Crossref] [PubMed]
  13. S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.
  14. S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
    [Crossref]
  15. M. Mohammadi, Developing an Imaging Bi-Spectrometer for Fluorescent Materials, Ph.D. Dissertation, Chester F. Carlson Center for Imaging Science, RIT (2009).
  16. F. Schieber, “Modeling the Appearance of Fluorescent Colors,” in Proceedings of Human Factors and Ergonomics Society Annual Meeting (SAGE, 2001), pp. 1324–1327.
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  18. M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
    [Crossref]
  19. H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
    [Crossref]
  20. B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).
  21. O. Shimomura, “Discovery of green fluorescent protein (GFP) (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 48(31), 5590–5602 (2009).
    [Crossref] [PubMed]
  22. E. H. Murchie and T. Lawson, “Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications,” J. Exp. Bot. 64(13), 3983–3998 (2013).
    [Crossref] [PubMed]
  23. S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
    [Crossref] [PubMed]
  24. S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
    [Crossref]
  25. P. L. Choyke and H. Kobayashi, “Medical uses of fluorescence imaging: Bringing disease to light,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1140–1146 (2012).
    [Crossref]
  26. E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
    [Crossref]
  27. K. Nishino, K. Nakamura, M. Tsuta, M. Yoshimura, J. Sugiyama, and S. Nakauchi, “Optimization of excitation-emission band-pass filter for visualization of viable bacteria distribution on the surface of pork meat,” Opt. Express 21(10), 12579–12591 (2013).
    [Crossref] [PubMed]
  28. J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).
  29. S. Gonzalez and M. D. Fairchild, “Evaluation of bispectral spectrophotometry for accurate colorimetry of printing materials,” in Proceedings of Color Imaging Conference (IS&T, 2000), pp. 39–43.
  30. L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
    [Crossref]
  31. C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
    [Crossref]

2016 (3)

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
[Crossref] [PubMed]

J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).

2015 (1)

2014 (2)

J. Suo, L. Bian, F. Chen, and Q. Dai, “Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance,” Opt. Express 22(2), 1697–1712 (2014).
[Crossref] [PubMed]

E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
[Crossref]

2013 (2)

2012 (1)

P. L. Choyke and H. Kobayashi, “Medical uses of fluorescence imaging: Bringing disease to light,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1140–1146 (2012).
[Crossref]

2010 (2)

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

2009 (2)

O. Shimomura, “Discovery of green fluorescent protein (GFP) (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 48(31), 5590–5602 (2009).
[Crossref] [PubMed]

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

2007 (1)

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

2003 (1)

C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
[Crossref]

2001 (1)

1994 (1)

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Res. Appl. 19(6), 427–436 (1994).
[Crossref]

1974 (1)

M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
[Crossref]

1954 (1)

R. Donaldson, “Spectrophotometry of fluorescent pigments,” Br. J. Appl. Phys. 5(6), 210–214 (1954).
[Crossref]

Ajdin, B.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Andersson, M.

L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
[Crossref]

Angelova, L. P.

E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
[Crossref]

Auwerkerken, A.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Bian, L.

Borisova, E. G.

E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
[Crossref]

Bro, R.

C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
[Crossref]

Buschmann, C.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Chaerle, L.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Chen, F.

Choyke, P. L.

P. L. Choyke and H. Kobayashi, “Medical uses of fluorescence imaging: Bringing disease to light,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1140–1146 (2012).
[Crossref]

Coppel, L. G.

L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
[Crossref]

Coppin, P.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Dai, Q.

Delalieux, S.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Donaldson, R.

R. Donaldson, “Spectrophotometry of fluorescent pigments,” Br. J. Appl. Phys. 5(6), 210–214 (1954).
[Crossref]

Fairchild, M. D.

S. Gonzalez and M. D. Fairchild, “Evaluation of bispectral spectrophotometry for accurate colorimetry of printing materials,” in Proceedings of Color Imaging Conference (IS&T, 2000), pp. 39–43.

Fu, Y.

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Fuchs, E.

Ginley, D. S.

M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
[Crossref]

Gonzalez, S.

S. Gonzalez and M. D. Fairchild, “Evaluation of bispectral spectrophotometry for accurate colorimetry of printing materials,” in Proceedings of Color Imaging Conference (IS&T, 2000), pp. 39–43.

Gundlach, D.

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Res. Appl. 19(6), 427–436 (1994).
[Crossref]

Hagenbeek, D.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Hanika, J.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Hasegawa, Y.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Hirai, K.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
[Crossref] [PubMed]

S. Tominaga, K. Hirai, and T. Horiuchi, “Estimation of bispectral Donaldson matrices of fluorescent objects by using two illuminant projections,” J. Opt. Soc. Am. A 32(6), 1068–1078 (2015).
[Crossref] [PubMed]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
[Crossref]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.

Horigome, J.

J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).

Horiuchi, T.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
[Crossref] [PubMed]

S. Tominaga, K. Hirai, and T. Horiuchi, “Estimation of bispectral Donaldson matrices of fluorescent objects by using two illuminant projections,” J. Opt. Soc. Am. A 32(6), 1068–1078 (2015).
[Crossref] [PubMed]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
[Crossref]

Hullin, B. A.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Ishida, H.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Kato, K.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
[Crossref] [PubMed]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
[Crossref]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.

Katoh, R.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Kautz, J.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Keulemans, J.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Kobayashi, H.

P. L. Choyke and H. Kobayashi, “Medical uses of fluorescence imaging: Bringing disease to light,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1140–1146 (2012).
[Crossref]

Kobayashi, Y.

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Kozuma, M.

J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).

Lam, A.

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

A. Lam and I. Sato, “Spectral modeling and relighting of reflective-fluorescent scenes,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 1452–1459.
[Crossref]

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Langsdorf, G.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Lawson, T.

E. H. Murchie and T. Lawson, “Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications,” J. Exp. Bot. 64(13), 3983–3998 (2013).
[Crossref] [PubMed]

Lenk, S.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Lensch, H. P. A.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Lhermitte, S.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Lichtenthaler, H. K.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Lindberg, S.

L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
[Crossref]

Markager, S.

C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
[Crossref]

Morse, D. L.

M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
[Crossref]

Murchie, E. H.

E. H. Murchie and T. Lawson, “Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications,” J. Exp. Bot. 64(13), 3983–3998 (2013).
[Crossref] [PubMed]

Nakamura, K.

Nakauchi, S.

Nishino, K.

Norberg, O.

L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
[Crossref]

Nozaki, K.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Okabe, T.

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Pavlova, E. P.

E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
[Crossref]

Pfündel, E. E.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Sato, I.

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

A. Lam and I. Sato, “Spectral modeling and relighting of reflective-fluorescent scenes,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 1452–1459.
[Crossref]

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Sato, Y.

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

Seidel, H. P.

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Shimomura, O.

O. Shimomura, “Discovery of green fluorescent protein (GFP) (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 48(31), 5590–5602 (2009).
[Crossref] [PubMed]

Shirasaki, T.

J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).

Somers, B.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Stedmon, C. A.

C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
[Crossref]

Sugiyama, J.

Suo, J.

Terstiege, H.

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Res. Appl. 19(6), 427–436 (1994).
[Crossref]

Tobita, S.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Tominaga, S.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis of mutual illumination between florescent objects,” J. Opt. Soc. Am. A 33(8), 1476–1487 (2016).
[Crossref] [PubMed]

S. Tominaga, K. Hirai, and T. Horiuchi, “Estimation of bispectral Donaldson matrices of fluorescent objects by using two illuminant projections,” J. Opt. Soc. Am. A 32(6), 1068–1078 (2015).
[Crossref] [PubMed]

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
[Crossref]

Tsuta, M.

Valcke, R.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Van Der Straeten, D.

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

Verstraeten, W. W.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Wrighton, M. S.

M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
[Crossref]

Yoshimura, M.

Zheng, Y.

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

ACM Trans. Graph. (1)

B. A. Hullin, J. Hanika, B. Ajdin, H. P. Seidel, J. Kautz, and H. P. A. Lensch, “Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions,” ACM Trans. Graph. 29(4), 97 (2010).

Angew. Chem. Int. Ed. Engl. (1)

O. Shimomura, “Discovery of green fluorescent protein (GFP) (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 48(31), 5590–5602 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Br. J. Appl. Phys. (1)

R. Donaldson, “Spectrophotometry of fluorescent pigments,” Br. J. Appl. Phys. 5(6), 210–214 (1954).
[Crossref]

Color Res. Appl. (1)

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Res. Appl. 19(6), 427–436 (1994).
[Crossref]

Coord. Chem. Rev. (1)

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, “Recent advances in instrumentation for absolute emission quantum yield,” Coord. Chem. Rev. 254(21–22), 2449–2458 (2010).
[Crossref]

Hitachi Review (1)

J. Horigome, M. Kozuma, and T. Shirasaki, “Fluorescence pattern analysis to assist food safety -Food analysis technology driven by fluorescence fingerprints-,” Hitachi Review 65(7), 248–254 (2016).

IEEE J. Sel. Top. Quantum Electron. (2)

P. L. Choyke and H. Kobayashi, “Medical uses of fluorescence imaging: Bringing disease to light,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1140–1146 (2012).
[Crossref]

E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE J. Sel. Top. Quantum Electron. 20(2), 211–222 (2014).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato, “Separating reflective and fluorescent components using high frequency illumination in the spectral domain,” IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 965–978 (2016).
[Crossref] [PubMed]

J. Exp. Bot. (2)

E. H. Murchie and T. Lawson, “Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications,” J. Exp. Bot. 64(13), 3983–3998 (2013).
[Crossref] [PubMed]

S. Lenk, L. Chaerle, E. E. Pfündel, G. Langsdorf, D. Hagenbeek, H. K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann, “Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications,” J. Exp. Bot. 58(4), 807–814 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. (1)

M. S. Wrighton, D. S. Ginley, and D. L. Morse, “A technique for the determination of absolute emission quantum yields of powdered samples,” J. Phys. Chem. 78(22), 2229–2233 (1974).
[Crossref]

Mar. Chem. (1)

C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Mar. Chem. 82(3–4), 239–254 (2003).
[Crossref]

Opt. Express (2)

Remote Sens. (1)

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1(4), 858–874 (2009).
[Crossref]

Other (12)

Y. Fu, A. Lam, Y. Kobayashi, I. Sato, T. Okabe, and Y. Sato, “Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2171–2178.
[Crossref]

H. Blasinski, J. Farrell, and B. Wandell, “Simultaneous surface reflectance and fluorescence spectra estimation,” arXiv:1605.04243 (2016).

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Spectral image analysis and appearance reconstruction of fluorescent objects under different illuminations,” in Proceedings of 4th CIE Expert Symposium on Colour and Visual Appearance (CIE, 2016), pp. 140–146.

S. Tominaga, K. Kato, K. Hirai, and T. Horiuchi, “Appearance decomposition and reconstruction of textured fluorescent objects,” in Proceedings of IS&T Inter. Sympo. Electronic Imaging 2017 in the Material Appearance Conference (IS&T, 2017), pp. 42–47.
[Crossref]

M. Mohammadi, Developing an Imaging Bi-Spectrometer for Fluorescent Materials, Ph.D. Dissertation, Chester F. Carlson Center for Imaging Science, RIT (2009).

F. Schieber, “Modeling the Appearance of Fluorescent Colors,” in Proceedings of Human Factors and Ergonomics Society Annual Meeting (SAGE, 2001), pp. 1324–1327.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

CIE, “Calibration methods and photo-luminescent standards for total radiance factor measurements,” CIE 182:2007, Commission Internationale de l'Eclairage, Vienna (2007).

A. Lam and I. Sato, “Spectral modeling and relighting of reflective-fluorescent scenes,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 1452–1459.
[Crossref]

Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective components by using a single hyperspectral image,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3523–3531.
[Crossref]

S. Gonzalez and M. D. Fairchild, “Evaluation of bispectral spectrophotometry for accurate colorimetry of printing materials,” in Proceedings of Color Imaging Conference (IS&T, 2000), pp. 39–43.

L. G. Coppel, M. Andersson, O. Norberg, and S. Lindberg, “Impact of illumination spectral power distribution on radiance factor of fluorescing materials,” in Proceedings of Colour and Visual Computing Symposium (IEEE, 2013), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Donaldson matrix obtained from a pink sample containing an orange fluorescent color.
Fig. 2
Fig. 2 Luminescent efficiency curve that represents the average curve of the efficiencies for different fluorescent samples. Thin curves represent the efficiencies for 12 different fluorescent objects. The bold curve and the broken curves represent the average curve and the standard deviation curves of ±1σ from the average, respectively [11].
Fig. 3
Fig. 3 Unimodality of the emission spectrum.
Fig. 4
Fig. 4 Spectral imaging system used in experiments.
Fig. 5
Fig. 5 Total spectral sensitivity functions of the imaging system.
Fig. 6
Fig. 6 Illuminant spectral-power distributions of four light sources.
Fig. 7
Fig. 7 Observed images of two fluorescent samples of (a) pink and (b) green under four light sources.
Fig. 8
Fig. 8 Average residual error for the pink sample as a function of parameters λ 1 and λ 2 .
Fig. 9
Fig. 9 Estimated spectral curves of (a) reflection, (b) emission, and (c) excitation for the pink sample.
Fig. 10
Fig. 10 Average residual error for the green sample as a function of parameters λ 1 and λ 2 .
Fig. 11
Fig. 11 Estimated spectral curves of (a) reflection, (b) emission, and (c) excitation for the green sample.
Fig. 12
Fig. 12 Estimated Donaldson matrix for the green sample.
Fig. 13
Fig. 13 Donaldson matrices for (a) pink and (b) green samples obtained by the previous method [11], where two light sources (1) and (2) were used to illuminate the same samples.
Fig. 14
Fig. 14 Illuminant spectral curves normalized to the same power.
Fig. 15
Fig. 15 Observed images of a scene with different objects under two light sources. ((a): incandescent and (b): sunlight).
Fig. 16
Fig. 16 Appearance of the reflection component. ((a): incandescent and (b): sunlight).
Fig. 17
Fig. 17 Appearance of the luminescent component. ((a): incandescent and (b): sunlight).
Fig. 18
Fig. 18 Illuminant spectral-power distributions of (a) white LED and (b) RGB mixing LED, which have the same color temperature of about 6500 K.
Fig. 19
Fig. 19 Appearance reconstruction results of the same scene by illuminating the two LED lights. ((a): white LED and (b): RGB mixing LED).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

D= D R + D L =[ 0 0 s 1 0 0 0 0 0 s 2 0 0 0 0 0 s N ]+[ α 1 β 1 α 1 β MN 0 0 0 α 2 β 1 α 2 β MN α 2 β MN+1 0 0 α N β 1 α N β MN α N β MN+1 α N β M1 0 ] =[ α 1 β 1 α 1 β MN s 1 0 0 α 2 β 1 α 2 β MN α 2 β MN+1 s 2 0 α N β 1 α N β MN α N β MN+1 α N β M1 s N ],
D=[ α 1 β 1 α 1 β 10 s 1 0 0 α 2 β 1 α 2 β 10 α 2 β 11 s 2 0 α 61 β 1 α 61 β 10 α 61 β 11 α 61 β 70 s 61 ]
y( λ em )=S( λ em )E( λ em )+α( λ em ) 350 λ em β( λ ex )E( λ ex )d λ ex =S( λ em )E( λ em )+α( λ em )C( λ em ),
C( λ em )= 350 λ em β( λ ex )E( λ ex )d λ ex .
Y=s.e+α.c,
[ y 1 ( λ em ) y 2 ( λ em ) y n ( λ em ) ]=S( λ em )[ E 1 ( λ em ) E 2 ( λ em ) E n ( λ em ) ]+α( λ em )[ C 1 ( λ em ) C 2 ( λ em ) C n ( λ em ) ]
y(λ)=E(λ)S(λ)+C(λ)α(λ)
y(λ)=E(λ)S(λ)
S ^ (λ)= ( E t (λ)y(λ))/ ( E t (λ)E(λ))
y(λ)=[ E(λ) C(λ) ][ S(λ) α(λ) ]
[ S ^ (λ) α ^ (λ) ]= [ X t (λ)X(λ) ] 1 X t (λ)y(λ)
C i (λ)= λ ex =350 λ β( λ ex ) E i ( λ ex )
β(λ)=Q(λ)(1 S ^ (λ)),
T i 400 700 R i (λ)dλ =const , ( i=1, 2, , 61 )
J( 1, 2 ) = 0.075, J( 2, 3 ) = 0.073, J( 1, 3 ) = 0.092, J( 1, 2, 3 ) = 0.071, J( 1, 2, 3, 4 ) = 0.164

Metrics