Abstract

We propose a new low-coherence interferometry system for dual-wavelength off-axis digital holography. By utilizing diffraction gratings, two beams with narrower bandwidths and different center wavelengths could be filtered in a single light-emitting diode. The characteristics of the system are analytically determined to extend the coherence length and field-of-view enough for off-axis configuration. The proposed system enables the fast and accurate measurement of the surface profile with more than a micrometer step height and less noise. The performance of the system is verified by the experimental results of a standard height sample.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength digital holography with a single low-coherence light source

Sungbin Jeon, Janghyun Cho, Ji-nan Jin, No-Cheol Park, and Young-Pil Park
Opt. Express 24(16) 18408-18416 (2016)

Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing

Mingguang Shan, Lei Liu, Zhi Zhong, Bin Liu, Guangyu Luan, and Yabin Zhang
Opt. Express 25(21) 26253-26261 (2017)

Wavelength-multiplexed digital holography for quantitative phase measurement using quantum dot film

Sungbin Jeon, Jae-Yong Lee, Janghyun Cho, Se-Hwan Jang, Young-Joo Kim, and No-Cheol Park
Opt. Express 26(21) 27305-27313 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  2. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [Crossref] [PubMed]
  3. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  4. L. Cavallini, G. Bolognesi, and R. Di Leonardo, “Real-time digital holographic microscopy of multiple and arbitrarily oriented planes,” Opt. Lett. 36(17), 3491–3493 (2011).
    [Crossref] [PubMed]
  5. Y. Lu, Y. Liu, and T. K. Lau, “Simple, portable, and low-cost microscope based on off-axis digital holography using two spherical waves,” Opt. Lett. 39(15), 4549–4552 (2014).
    [Crossref] [PubMed]
  6. A. Mota, G. Salzer, R. Prata, T. Nguyen, and G. Nehmetallah, “Portable, Low-cost, Lensless DHM System Using RGB LEDs,” in Digital Holography and Three-Dimensional Imaging (OSA, 2016), paper W2A.40.
  7. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
    [Crossref]
  8. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
    [Crossref]
  9. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [Crossref] [PubMed]
  10. J. Garcia-Sucerquia, “Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode,” Appl. Opt. 52(1), A232–A239 (2013).
    [Crossref] [PubMed]
  11. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
    [Crossref] [PubMed]
  12. F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett. 37(12), 2190–2192 (2012).
    [Crossref] [PubMed]
  13. R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
    [Crossref] [PubMed]
  14. F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
    [Crossref] [PubMed]
  15. I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
    [Crossref]
  16. E. Cuche, P. Poscio, and C. D. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low-coherence holographic technique,” in Optical Tomography at the Microscopic Scale by Means of a Numerical Low-Coherence Holographic Technique, H. J. Foth, R. Marchesini, and H. Podbielska, eds. (SPIE, 1996), Vol. 2927, pp. 61–66.
  17. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21(3), 367–377 (2004).
    [Crossref] [PubMed]
  18. B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
    [Crossref] [PubMed]
  19. S. Witte, A. Plauşka, M. C. Ridder, L. van Berge, H. D. Mansvelder, and M. L. Groot, “Short-coherence off-axis holographic phase microscopy of live cell dynamics,” Biomed. Opt. Express 3(9), 2184–2189 (2012).
    [Crossref] [PubMed]
  20. S. Jeon, J. Cho, J. N. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
    [Crossref] [PubMed]
  21. C. Palmer, Diffraction Gratings Handbook (Newport Corporation, 2014), Chap. 2.
  22. W. G. Fastie, “A Small Plane Grating Monochromator,” J. Opt. Soc. Am. 42(9), 641 (1952).
    [Crossref]
  23. G. Nardin, T. Colomb, Y. Emery, and C. Moser, “Versatile spectral modulation of a broadband source for digital holographic microscopy,” Opt. Express 24(24), 27791–27804 (2016).
    [Crossref] [PubMed]
  24. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
    [Crossref] [PubMed]
  25. Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
    [Crossref] [PubMed]
  26. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15(14), 8851–8856 (2007).
    [Crossref] [PubMed]
  27. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  28. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45(3), 451–459 (2006).
    [Crossref] [PubMed]

2017 (2)

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (3)

2013 (3)

2012 (2)

2011 (1)

2010 (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

2008 (2)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

2005 (1)

2004 (1)

2003 (1)

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
[Crossref]

1999 (1)

1952 (1)

Aspert, N.

Bian, Z.

Bianco, V.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Blu, T.

Bolognesi, G.

Boss, D.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref] [PubMed]

Bourquin, S.

Bramanti, A.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Cavallini, L.

Chang, C.-C.

Charrière, F.

Chen, G.-L.

Cho, J.

Chu, D.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref] [PubMed]

Colomb, T.

Cuche, E.

Dan, D.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Deng, Y.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref] [PubMed]

Depeursinge, C.

Di Leonardo, R.

Dong, S.

Dubois, F.

Emery, Y.

Fastie, W. G.

Ferraro, P.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Gao, P.

Garcia-Sucerquia, J.

Gopinathan, U.

Groot, M. L.

Guo, K.

Guo, R.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Han, J.

Horstmeyer, R.

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Javidi, B.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref] [PubMed]

Jeon, S.

Jin, J. N.

Kato, J.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
[Crossref]

Kemper, B.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Kim, M. K.

Kühn, J.

Kuo, M.-K.

Langehanenberg, P.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Lau, T. K.

Lei, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Liebling, M.

Lin, C.-Y.

Liu, Y.

Lu, Y.

Magistretti, P.

Mandracchia, B.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Mansvelder, H. D.

Marian, A.

Marquet, P.

Matsuzaki, H.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
[Crossref]

Min, J.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Montfort, F.

Moon, I.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref] [PubMed]

Moser, C.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Mugnano, M.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Nardin, G.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Osten, W.

Ou, X.

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Park, N.-C.

Park, Y.-P.

Parshall, D.

Paturzo, M.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Pedrini, G.

Plauska, A.

Rappaz, B.

Remmersmann, C.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Ridder, M. C.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Shiradkar, R.

Stürwald, S.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Unser, M.

van Berge, L.

von Bally, G.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Wang, Z.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

Witte, S.

Xin, H.

Yamaguchi, I.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
[Crossref]

Yan, S.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Yang, Y.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Yao, B.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Ye, T.

Yi, F.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref] [PubMed]

Yourassowsky, C.

Yu, X.

Zheng, G.

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

F. Yi, I. Moon, B. Javidi, D. Boss, and P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref] [PubMed]

J. Opt. (1)

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Lab Chip (2)

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 1267 (2003).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46(7), 499–507 (2008).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (1)

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref] [PubMed]

Other (3)

A. Mota, G. Salzer, R. Prata, T. Nguyen, and G. Nehmetallah, “Portable, Low-cost, Lensless DHM System Using RGB LEDs,” in Digital Holography and Three-Dimensional Imaging (OSA, 2016), paper W2A.40.

C. Palmer, Diffraction Gratings Handbook (Newport Corporation, 2014), Chap. 2.

E. Cuche, P. Poscio, and C. D. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low-coherence holographic technique,” in Optical Tomography at the Microscopic Scale by Means of a Numerical Low-Coherence Holographic Technique, H. J. Foth, R. Marchesini, and H. Podbielska, eds. (SPIE, 1996), Vol. 2927, pp. 61–66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Sketch of the experimental setup. DG: diffraction gratings, BS: beamsplitter, OBJ: object. The labels O and R appearing in the inset represent the object and reference beams, respectively.
Fig. 2
Fig. 2 Normalized spectral distribution of the proposed filtered beam modulated by (a) bandwidths with constant center wavelength (617 nm), and (b) center wavelengths with constant bandwidth (FWHM = 3 nm).
Fig. 3
Fig. 3 Sketch of the (a) spatial and (b) temporal coherence lengths in the proposed low-coherence off-axis DH system.
Fig. 4
Fig. 4 Dual-wavelength reconstruction process using the proposed system. (a) Acquired hologram; (b) its Fourier spectrum for λ = 620.7 nm; (c) & (d) dual-wavelength phase images with aberration compensation for λ = 620.7 nm and λ = 632.4 nm, respectively; (e) & (f) 3D and 2D phase profiles obtained by dual-wavelength restoration, respectively; (g) cross-sectional profile of the solid line in (f); and (h) detailed profile of dashed region in (g).

Tables (1)

Tables Icon

Table 1 Optical Properties of the Utilized Light Sources

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

β=arcsin( λ C d sinα ),
tDtan( β λ 2 β λ 1 ),
L SC = 1.22λz/w ,
L TC = 4ln2 π λ 2 Δλ .
θ max =arctan( h max L SC )=arctan( L TC L SC ).
Λ= λ 1 λ 2 | λ 2 λ 1 | .
h= Λ( ϕ λ 1 ϕ λ 2 ) 4π ,

Metrics