Abstract

We construct an experimental measurement system for rotation vibration signal detection using the orbital angular momentum (OAM) of light in a Sagnac interferometer. Inputting light beams with different OAM, we demonstrate that the measured signal and signal-to-noise ratio can be increased by the OAM mode index l. In addition, the Sagnac interferometer can further improve the vibration signal and suppress the environmental noises. Such system has potential applications in high-precision sensing and monitoring of rotation vibrations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1,1) interferometers

Jun Liu, Wenxiao Liu, Shitao Li, Dong Wei, Hong Gao, and Fuli Li
Photon. Res. 5(6) 617-622 (2017)

Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement

Zijing Zhang, Tianyuan Qiao, Kun Ma, Longzhu Cen, Jiandong Zhang, Feng Wang, and Yuan Zhao
Opt. Lett. 41(16) 3856-3859 (2016)

Measuring orbital angular momentums of light based on petal interference patterns

Shengzhe Pan, Chunying Pei, Shuang Liu, Jin Wei, Di Wu, Zhanou Liu, Yaling Yin, Yong Xia, and Jianping Yin
OSA Continuum 1(2) 451-461 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
    [Crossref] [PubMed]
  3. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [Crossref]
  4. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
    [Crossref] [PubMed]
  5. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  6. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
    [Crossref] [PubMed]
  7. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2010).
    [Crossref] [PubMed]
  8. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
    [Crossref] [PubMed]
  9. D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
    [Crossref] [PubMed]
  10. D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
    [Crossref]
  11. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref] [PubMed]
  12. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  13. Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” arXiv:1604.06865 (2016).
  14. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
    [Crossref] [PubMed]
  15. H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
    [Crossref] [PubMed]
  16. H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61(6), 062308 (2000).
    [Crossref]
  17. L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100(11), 110504 (2008).
    [Crossref] [PubMed]
  18. S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
    [Crossref] [PubMed]
  19. P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
    [Crossref] [PubMed]
  20. M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
    [Crossref] [PubMed]
  21. M. Zhao, X. Gao, M. Xie, W. Zhai, W. Xu, S. Huang, and W. Gu, “Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam,” Opt. Lett. 41(11), 2549–2552 (2016).
    [Crossref] [PubMed]
  22. H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
    [Crossref] [PubMed]
  23. G. Li, T. Zentgraf, and S. Zhang, “Rotational Doppler effect in nonlinear optics,” Nat. Phys. 12(8), 736–740 (2016).
    [Crossref]
  24. Z. Zhang, T. Qiao, K. Ma, L. Cen, J. Zhang, F. Wang, and Y. Zhao, “Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement,” Opt. Lett. 41(16), 3856–3859 (2016).
    [Crossref] [PubMed]
  25. E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
    [Crossref] [PubMed]
  26. X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
    [Crossref]
  27. Z. Zhang, T. Qiao, K. Ma, J. Zhang, L. Cen, F. Wang, and Y. Zhao, “Super-resolving angular rotation measurement using binary-outcome homodyne detection,” Opt. Express 24(16), 18477–18484 (2016).
    [Crossref] [PubMed]
  28. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
    [Crossref] [PubMed]
  29. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
    [Crossref]
  30. C. C. Gerry and J. Mimih, “The parity operator in quantum optical metrology,” Contemp. Phys. 51(6), 497–511 (2010).
    [Crossref]
  31. L. Cohen, D. Istrati, L. Dovrat, and H. S. Eisenberg, “Super-resolved phase measurements at the shot noise limit by parity measurement,” Opt. Express 22(10), 11945–11953 (2014).
    [Crossref] [PubMed]
  32. S. Slussarenko, V. D’Ambrosio, B. Piccirillo, L. Marrucci, and E. Santamato, “The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing,” Opt. Express 18(26), 27205–27216 (2010).
    [Crossref] [PubMed]
  33. F.-X. Wang, W. Chen, Y.-P. Li, G.-W. Zhang, Z.-Q. Yin, S. Wang, G.-C. Guo, and Z.-F. Han, “Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation,” Opt. Express 25(21), 24946–24959 (2017).
    [Crossref] [PubMed]
  34. O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
    [Crossref]
  35. F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
    [Crossref]
  36. N. González, G. Molina-Terriza, and J. P. Torres, “How a Dove prism transforms the orbital angular momentum of a light beam,” Opt. Express 14(20), 9093–9102 (2006).
    [Crossref] [PubMed]
  37. M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Phys. Rev. A 48(4), 3186–3190 (1993).
    [Crossref] [PubMed]
  38. A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
    [Crossref]
  39. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [Crossref] [PubMed]
  40. F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
    [Crossref]

2017 (4)

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

F.-X. Wang, W. Chen, Y.-P. Li, G.-W. Zhang, Z.-Q. Yin, S. Wang, G.-C. Guo, and Z.-F. Han, “Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation,” Opt. Express 25(21), 24946–24959 (2017).
[Crossref] [PubMed]

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

2016 (6)

2015 (1)

2014 (4)

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
[Crossref]

L. Cohen, D. Istrati, L. Dovrat, and H. S. Eisenberg, “Super-resolved phase measurements at the shot noise limit by parity measurement,” Opt. Express 22(10), 11945–11953 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

2013 (2)

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
[Crossref] [PubMed]

2012 (2)

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

2011 (1)

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
[Crossref]

2010 (3)

2008 (2)

2006 (4)

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

N. González, G. Molina-Terriza, and J. P. Torres, “How a Dove prism transforms the orbital angular momentum of a light beam,” Opt. Express 14(20), 9093–9102 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2002 (1)

C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
[Crossref]

2000 (2)

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61(6), 062308 (2000).
[Crossref]

1996 (1)

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

1993 (2)

M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Phys. Rev. A 48(4), 3186–3190 (1993).
[Crossref] [PubMed]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Agarwal, G. S.

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Aït-Ameur, K.

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Almeida, M. P.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Andersen, U. L.

E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
[Crossref] [PubMed]

Ando, T.

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Barnett, S.

Barnett, S. M.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Bechmann-Pasquinucci, H.

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61(6), 062308 (2000).
[Crossref]

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Benmoussa, A.

C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
[Crossref]

Bollinger, J. J.

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

Boyd, R. W.

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
[Crossref]

Byrnes, T.

F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
[Crossref]

Campos, R. A.

C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
[Crossref]

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Capasso, F.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

Cen, L.

Chen, P.

Chen, W.

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Cohen, L.

Courtial, J.

Cui, G.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

D’Ambrosio, V.

Dai, W.

F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
[Crossref]

de Saint Denis, R.

Distante, E.

E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
[Crossref] [PubMed]

Dixon, P. B.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

Dong, J.

Dovrat, L.

Dowling, J. P.

F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
[Crossref]

M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Phys. Rev. A 48(4), 3186–3190 (1993).
[Crossref] [PubMed]

Du, C.

Eisenberg, H. S.

Fang, X.

Feng, X. M.

X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
[Crossref]

Franke-Arnold, S.

Fu, D.

Fukuchi, N.

Gao, X.

Genevet, P.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

Gerry, C. C.

C. C. Gerry and J. Mimih, “The parity operator in quantum optical metrology,” Contemp. Phys. 51(6), 497–511 (2010).
[Crossref]

C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
[Crossref]

Gibson, G.

González, N.

Gu, C.

Gu, W.

Guo, G.-C.

Guo, J.

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Han, Z.-F.

Hara, T.

He, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Heinzen, D. J.

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Hierle, R.

Howell, J. C.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

Howland, G. A.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

Hu, W.

Hu, X.

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Huang, S.

Inoue, T.

Istrati, D.

Itano, W. M.

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

Ježek, M.

E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
[Crossref] [PubMed]

Jha, A. K.

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
[Crossref]

Jia, X.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Jin, G. R.

X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
[Crossref]

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

Lavery, M. P.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Lemelle, D. S.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

Li, G.

G. Li, T. Zentgraf, and S. Zhang, “Rotational Doppler effect in nonlinear optics,” Nat. Phys. 12(8), 736–740 (2016).
[Crossref]

Li, L.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Li, S.

Li, Y.-P.

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

Liu, F.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Lu, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Lu, Y. Q.

Ma, K.

Magaña-Loaiza, O. S.

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

Matsumoto, N.

Mimih, J.

C. C. Gerry and J. Mimih, “The parity operator in quantum optical metrology,” Contemp. Phys. 51(6), 497–511 (2010).
[Crossref]

Ming, H.

Mirhosseini, M.

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

Miyaji, G.

Miyanaga, N.

Mo, Q.

Molina-Terriza, G.

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Moxley, F. I.

F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
[Crossref]

Nakatsuka, M.

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Ni, R.

Ohtake, Y.

Padgett, M.

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Pas’ko, V.

Passilly, N.

Peres, A.

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Piccirillo, B.

Qiao, T.

Ren, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Ribeiro, P. H. S.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

Roch, J.-F.

Rodenburg, B.

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Santamato, E.

Schneeloch, J.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Phys. Rev. A 48(4), 3186–3190 (1993).
[Crossref] [PubMed]

Silberhorn, C.

L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100(11), 110504 (2008).
[Crossref] [PubMed]

Slussarenko, S.

Speirits, F. C.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sueda, K.

Tittel, W.

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61(6), 062308 (2000).
[Crossref]

Torres, J. P.

Treussart, F.

Tur, M.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Vasnetsov, M.

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Walborn, S. P.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

Walmsley, I. A.

L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100(11), 110504 (2008).
[Crossref] [PubMed]

Wang, A.

Wang, F.

Wang, F.-X.

Wang, H.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Wang, J.

Wang, S.

Wei, D.

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Wineland, D. J.

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, Y.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Xiao, M.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

Xiao, S.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Xie, G.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Xie, M.

Xu, L.

Xu, W.

Yan, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yang, W.

X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
[Crossref]

Yin, Z.-Q.

Yu, J.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Zentgraf, T.

G. Li, T. Zentgraf, and S. Zhang, “Rotational Doppler effect in nonlinear optics,” Nat. Phys. 12(8), 736–740 (2016).
[Crossref]

Zhai, W.

Zhang, G.-W.

Zhang, J.

Zhang, L.

L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100(11), 110504 (2008).
[Crossref] [PubMed]

Zhang, P.

Zhang, S.

G. Li, T. Zentgraf, and S. Zhang, “Rotational Doppler effect in nonlinear optics,” Nat. Phys. 12(8), 736–740 (2016).
[Crossref]

Zhang, X.

Zhang, Y.

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Zhang, Z.

Zhao, M.

Zhao, Y.

Zhao, Z.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zheng, R.

Zhong, W.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Zhou, H.

Zhou, Y.

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Zhu, S. N.

Zhu, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Appl. Phys. Lett. (2)

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally-poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, “Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement,” Appl. Phys. Lett. 110(2), 021106 (2017).
[Crossref]

Contemp. Phys. (1)

C. C. Gerry and J. Mimih, “The parity operator in quantum optical metrology,” Contemp. Phys. 51(6), 497–511 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Commun. (2)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Li, T. Zentgraf, and S. Zhang, “Rotational Doppler effect in nonlinear optics,” Nat. Phys. 12(8), 736–740 (2016).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Opt. Express (10)

K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
[Crossref] [PubMed]

D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556–11563 (2017).
[Crossref] [PubMed]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2010).
[Crossref] [PubMed]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref] [PubMed]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

L. Cohen, D. Istrati, L. Dovrat, and H. S. Eisenberg, “Super-resolved phase measurements at the shot noise limit by parity measurement,” Opt. Express 22(10), 11945–11953 (2014).
[Crossref] [PubMed]

S. Slussarenko, V. D’Ambrosio, B. Piccirillo, L. Marrucci, and E. Santamato, “The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing,” Opt. Express 18(26), 27205–27216 (2010).
[Crossref] [PubMed]

F.-X. Wang, W. Chen, Y.-P. Li, G.-W. Zhang, Z.-Q. Yin, S. Wang, G.-C. Guo, and Z.-F. Han, “Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation,” Opt. Express 25(21), 24946–24959 (2017).
[Crossref] [PubMed]

Z. Zhang, T. Qiao, K. Ma, J. Zhang, L. Cen, F. Wang, and Y. Zhao, “Super-resolving angular rotation measurement using binary-outcome homodyne detection,” Opt. Express 24(16), 18477–18484 (2016).
[Crossref] [PubMed]

N. González, G. Molina-Terriza, and J. P. Torres, “How a Dove prism transforms the orbital angular momentum of a light beam,” Opt. Express 14(20), 9093–9102 (2006).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (8)

F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, “Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates,” Phys. Rev. A 93(5), 053603 (2016).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

X. M. Feng, G. R. Jin, and W. Yang, “Quantum interferometry with binary-outcome measurements in the presence of phase diffusion,” Phys. Rev. A 90(1), 013807 (2014).
[Crossref]

M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Phys. Rev. A 48(4), 3186–3190 (1993).
[Crossref] [PubMed]

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83(5), 053829 (2011).
[Crossref]

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54(6), R4649–R4652 (1996).
[Crossref] [PubMed]

C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry,” Phys. Rev. A 66(1), 013804 (2002).
[Crossref]

H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A 61(6), 062308 (2000).
[Crossref]

Phys. Rev. Lett. (8)

L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100(11), 110504 (2008).
[Crossref] [PubMed]

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96(9), 090501 (2006).
[Crossref] [PubMed]

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled states,” Phys. Rev. Lett. 108(14), 143603 (2012).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of Angular Rotations Using Weak Measurements,” Phys. Rev. Lett. 112(20), 200401 (2014).
[Crossref]

E. Distante, M. Ježek, and U. L. Andersen, “Deterministic Superresolution with Coherent States at the Shot Noise Limit,” Phys. Rev. Lett. 111(3), 033603 (2013).
[Crossref] [PubMed]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

Science (1)

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Other (1)

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” arXiv:1604.06865 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of an OAM beam passing through a Dove prism. Two light beams (p and q) with the same l pass through the Dove prism in opposite directions. The Dove prism gives the two light beams opposite phase changes.
Fig. 2
Fig. 2 Experimental setup. There are six sections: (1) OAM light generation; (2) Mach-Zehnder interferometer; (3) Signal locking; (4) Sagnac interferometer; (5) Vibration generation; (6) Signal detection. HWP: half-wave plate, PBS: polarization beam splitter; BPD: balanced photodetectors; BS: beam splitter; DP: Dove prism; PZT: piezoelectric transducer.
Fig. 3
Fig. 3 Sweep of the rotation angle of the Dove prism. The black points are measured from the Sagnac interferometer with l = 5 and the red line is a fitting curve. Inset shows the phase distribution of the OAM mode l = 5.
Fig. 4
Fig. 4 Measurement of a static rotation angle using different OAM light beams with indices ranging from l = 1 to 10.
Fig. 5
Fig. 5 (a) Vibration signal amplitude versus l. Because the frequency response of the system, the measured results at different frequencies have different slopes. (b)-(d) show the measured results with a vibration signal at 430 Hz, which are −32.95dB (0.51mV) at l = 1, −24.69dB (3.40mV) at l = 6 and −22.67dB (5.41mV) at l = 10.
Fig. 6
Fig. 6 System noises with different OAM light beams. When the signal is 320 Hz and the OAM mode index is l = 10, the black line shows the system noise at different input power. The blue line and the red line show the noise features of the different OAM light beams with 8mW and 5mW input power, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( a out b out )= 1 2 ( 1 1 1 1 )( e iφ 0 0 e iφ )( 1 1 1 1 )( a b ).
I a out = cos 2 φ a a = | α | 2 cos 2 φ, I b out = cos 2 φ a a = | α | 2 sin 2 φ
I =| I a I b |= | α | 2 cos2φ.
I / θ 4l | α | 2 ,
SNR | I / θ | | Δ I | l | α | 2 .
A'= NA/2 ,

Metrics