Abstract

Multi-channel measurements with fine spatial resolution will make magnetoencephalograms (MEGs) possible with small animals using optically pumped magnetometers (OPMs). Therefore, we fabricated a 20-channel probe-beam detector that uses a K-Rb hybrid OPM to increase the spatial resolution. First, we investigated the sensitivity of the detector using the multi-channel measurements and demonstrated that the detector had a fine sensitivity (10–20 fT/Hz1/2 at 10 Hz). Subsequently, we measured magnetic field distribution generated from a loop coil and compared those measurements with analytically calculated distributions. The measurements were in good agreement with the theoretical predictions. The experimental results indicate that our newly developed multi-channel OPM detector has sufficient performance specifications for MEG measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Four-channel optically pumped atomic magnetometer for magnetoencephalography

Anthony P. Colombo, Tony R. Carter, Amir Borna, Yuan-Yu Jau, Cort N. Johnson, Amber L. Dagel, and Peter D. D. Schwindt
Opt. Express 24(14) 15403-15416 (2016)

Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios

Sho Ito, Yosuke Ito, and Tetsuo Kobayashi
Opt. Express 27(6) 8037-8047 (2019)

Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography

Guiying Zhang, Shengjie Huang, Feixiang Xu, Zhenghui Hu, and Qiang Lin
Opt. Express 27(2) 597-607 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
    [Crossref]
  2. J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [Crossref] [PubMed]
  3. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [Crossref] [PubMed]
  4. D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [Crossref]
  5. G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
    [Crossref] [PubMed]
  6. K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
    [Crossref] [PubMed]
  7. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
    [Crossref]
  8. R. Wyllie, M. Kauer, R. T. Wakai, and T. G. Walker, “Optical magnetometer array for fetal magnetocardiography,” Opt. Lett. 37, 2247–2249 (2012).
    [Crossref] [PubMed]
  9. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
    [Crossref]
  10. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
    [Crossref]
  11. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
    [Crossref] [PubMed]
  12. K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
    [Crossref]
  13. H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
    [Crossref]
  14. K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
    [Crossref]
  15. Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
    [Crossref]

2017 (1)

Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
[Crossref]

2016 (2)

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

2015 (1)

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

2014 (3)

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

2012 (1)

2011 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

2009 (1)

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

2007 (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

2002 (1)

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

1993 (1)

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

1958 (1)

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Balabas, M. V.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Begus, S.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Bison, G.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Budvytyte, R.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Castagna, N.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Chait, M.

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Cheveigné, A.

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Christianson, G. B.

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Dehmelt, H. G.

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

Fuchs, A. M.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Hamalainen, M.

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Hari, R.

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Heimburg, T.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Hofer, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Ilmoniemi, R. J.

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Ito, Y.

Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Jensen, K.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Kamada, K.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Kasprzak, M.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Kauer, M.

Kim, K.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Knowles, P.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Knuutila, J.

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Kobayash, T.

Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
[Crossref]

Kobayashi, T.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Kornack, T.W.

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Lee, SK.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Linden, J. F.

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Lounasmaa, O. V.

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Mamishin, Y.

Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
[Crossref]

Mizutani, N.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Mosgaard, L. D.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Müller, J. H.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Natsukawa, H.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Neurophysiol, J.

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Okano, K.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Olesen, S.-P.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Polzik, E. S.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Sato, D.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Saudan, H.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Schenker, J.-L.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Stærkind, H. C.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Thomas, R. A.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Trontelj, Z.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Vasilakis, G.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Wakai, R. T.

Walker, T. G.

Wang, T.

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Weis, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Wyllie, R.

Xia, H.

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Appl. Phys. Lett. (1)

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

IEEE Trans. Magn. (3)

Y. Mamishin, Y. Ito, and T. Kobayash, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53, 4001606 (2017).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

J. Neurophysiol. (1)

G. B. Christianson, M. Chait, A. Cheveigné, J. F. Linden, and J. Neurophysiol, “Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig,” J. Neurophysiol. 112, 3053 (2014).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Nat. Phys. (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Neuroimage (1)

K. Kim, S. Begus, H. Xia, SK. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

Phys. Rev. Lett. (1)

J. C. Allred, R. N. Lyman, T.W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Sci. Rep. (1)

K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis, L. D. Mosgaard, H. C. Stærkind, J. H. Müller, T. Heimburg, S.-P. Olesen, and E. S. Polzik, “Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity,” Sci. Rep. 6, 29638 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup of OPM system. A K-Rb hybrid cell is placed in a three-layer magnetic shield. Magnetic field is measured along the y-axis.
Fig. 2
Fig. 2 The probe beam detector we fabricated. Two photodiode arrays are attached to a plastic housing for the polarizing beam splitter.
Fig. 3
Fig. 3 Arrangement of the photo diodes on a printed circuit board. Density of the photo diodes along the pump beam direction is 2.5 cm−1.
Fig. 4
Fig. 4 The fabricated amplifier. The printed circuit board includes amplifier circuits for 20-channel signals and was enclosed in metal shielding.
Fig. 5
Fig. 5 Schematic of the amplifier circuit. To increase amplifier density, we used 4-channel amplifiers (TL074).
Fig. 6
Fig. 6 Magnetic field sensitivities of 10 channels (Ch1-10) measured simultaneously.
Fig. 7
Fig. 7 Magnetic field sensitivities of 10 channels (Ch1-10). The sensitivities at 10 Hz were 10–20 fT/Hz1/2.
Fig. 8
Fig. 8 Contributions from different noise sources to Ch 1. Magnetic noise, optical noise and electrical noise were 18.4, 10.1, 4.0 fT/Hz1/2 at 10 Hz, respectively.
Fig. 9
Fig. 9 Experimental procedure. (a) The location of the loop coil shown in green circle was changed 10 times along the x-axis (measurement numbers 1–10). (b) Sensing areas enclosed with a red square were measured simultaneously. The measurement numbers 1–10 in (b) correspond to those in (a), respectively. The two-dimensional magnetic field distribution was given according to the relative positions of the sensing area and the loop coil.
Fig. 10
Fig. 10 Magnetic field distributions from a loop coil. (a) Calculated result. (b) Measured result. The dotted circles are measuring locations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

l D = D Γ ,
g = ( 1 B e 2 i B 2 i ) × 100 % ,
B e 2 = i ( B i B i ) 2 ,
B ( r ) = μ 0 4 π C I δ s × r r 3 ,

Metrics