Abstract

W-band inverse synthetic aperture radar (ISAR) imaging systems are very useful for automatic target recognition and classification due to their high spatial resolution, high penetration and small antenna size. Broadband linear frequency modulated wave (LFMW) is usually applied to this system for its de-chirping characteristic. However, nearly all of the LFMW generated in electronic W-band ISAR system are based on multipliers and mixers, suffering seriously from electromagnetic interference (EMI) and timing jitter. And photonic-assisted LFMW generator reported before is always limited by bandwidth or time aperture. In this paper, for the first time, we propose and experimentally demonstrate a high-resolution W-band ISAR imaging system utilizing a novel logic-operation-based photonic digital-to-analog converter (LOPDAC). The equivalent sampling rate of the LOPDAC is twice as large as the rate of the digital driving signal. Thus, a broadband LFMW with a large time aperture can be generated by the LOPDAC. This LFMW is up-converted to W band with an optical frequency comb. After photonic-assisted de-chirping processing and data processing to the echo, a high-resolution two-dimension image can be obtained. Experimentally, W-band radar with a time-bandwidth product (TBWP) as large as 79200 (bandwidth 8 GHz; temporal duration 9.9 us) is established and investigated. Results show that the two-dimension (range and cross-range) imaging resolution is ~1.9 cm × ~1.6 cm with a sampling rate of 100 MSa/s in the receiver.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging

Fangzheng Zhang, Qingshui Guo, Ziqian Wang, Pei Zhou, Guoqiang Zhang, Jun Sun, and Shilong Pan
Opt. Express 25(14) 16274-16281 (2017)

Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information

Anle Wang, Jianghai Wo, Xiong Luo, Yalan Wang, Wenshan Cong, Pengfei Du, Junkai Zhang, Biao Zhao, Jin Zhang, Yong Zhu, Jiangqiao Lan, and Lan Yu
Opt. Express 26(16) 20708-20717 (2018)

Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.
  2. A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
    [Crossref]
  3. S. Groß, J. Delanoe, and L. Hirsch, “Airborne remote sensing of clouds and precipitation using Ka- and W-band,” in Conference on Radar Meteorology (2015).
  4. J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
    [Crossref]
  5. K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
    [Crossref]
  6. N. S. Gopalsami and A. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001).
    [Crossref]
  7. J. K. Christensen and M. J. Underhill, “Phase coded pulse Doppler and continuous wave 77 GHz radar measurement and analysis facility,” in Proceedings of IEEE Conference on Radar Sonar and Navigation (IEEE, 2004), pp. 365–374.
    [Crossref]
  8. W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).
  9. X. Xiao, S. Li, B. Chen, X. Yang, D. Wu, X. Xue, X. Zheng, and B. Zhou, “A Microwave Photonics-based Inverse Synthetic Aperture Radar system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), papaer JW2A.144.
    [Crossref]
  10. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
    [Crossref] [PubMed]
  11. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
    [Crossref] [PubMed]
  12. Y. Li, A. Rashidinejad, J. Wun, D. E. Leaird, J. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica 1(6), 446–454 (2014).
    [Crossref]
  13. B. Mencia-Oliva, J. Grajal, and A. Badolato, “100-GHz FMCW Radar Front-End for ISAR and 3D Imaging,” in Proceedings of IEEE National Radar Conference (IEEE, 2011), pp. 389–392.
    [Crossref]
  14. D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
    [Crossref]
  15. V. C. Chen and M. Martorella, Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications (SciTech Publishing, 2014).
  16. B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
    [Crossref]
  17. Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
    [Crossref]
  18. M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle (SciTech Publishing, 2010).
  19. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  20. A. Rashidinejad and A. M. Weiner, “Photonic Radio-Frequency Arbitrary Waveform Generation With Maximal Time-Bandwidth Product Capability,” J. Lightwave Technol. 32(20), 3383–3393 (2014).
    [Crossref]
  21. W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.
    [Crossref]
  22. A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photonics Technol. Lett. 15(1), 117–119 (2003).
    [Crossref]
  23. J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
    [Crossref]
  24. F. Zhang, B. Gao, and S. Pan, “Two-bit Photonic Digital-to-Analog Conversion Unit based on Polarization Multiplexing,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper AM1G.5.
    [Crossref]
  25. M. Fujiwara, M. Teshima, J.-i. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on Sinusoidal Amplitude and Phase Hybrid Modulation,” J. Lightwave Technol. 21(11), 2705–2714 (2003).
    [Crossref]

2017 (3)

2014 (2)

2013 (2)

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
[Crossref]

2012 (2)

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

2009 (1)

2003 (2)

2001 (1)

N. S. Gopalsami and A. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001).
[Crossref]

2000 (1)

W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).

Ambacher, O.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Badolato, A.

B. Mencia-Oliva, J. Grajal, and A. Badolato, “100-GHz FMCW Radar Front-End for ISAR and 3D Imaging,” in Proceedings of IEEE National Radar Conference (IEEE, 2011), pp. 389–392.
[Crossref]

Bleh, D.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Camp, W. W.

W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).

Chen, B.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Cheng, B. B.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Christensen, J. K.

J. K. Christensen and M. J. Underhill, “Phase coded pulse Doppler and continuous wave 77 GHz radar measurement and analysis facility,” in Proceedings of IEEE Conference on Radar Sonar and Navigation (IEEE, 2004), pp. 365–374.
[Crossref]

Das, P. K.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photonics Technol. Lett. 15(1), 117–119 (2003).
[Crossref]

Dauvignac, J.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Delanoe, J.

S. Groß, J. Delanoe, and L. Hirsch, “Airborne remote sensing of clouds and precipitation using Ka- and W-band,” in Conference on Radar Meteorology (2015).

Ding, M.

Dyck, A.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Fujiwara, M.

Futatsumori, S.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Gao, B.

R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
[Crossref] [PubMed]

F. Zhang, B. Gao, and S. Pan, “Two-bit Photonic Digital-to-Analog Conversion Unit based on Polarization Multiplexing,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper AM1G.5.
[Crossref]

Gopalsami, N. S.

N. S. Gopalsami and A. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001).
[Crossref]

Grajal, J.

B. Mencia-Oliva, J. Grajal, and A. Badolato, “100-GHz FMCW Radar Front-End for ISAR and 3D Imaging,” in Proceedings of IEEE National Radar Conference (IEEE, 2011), pp. 389–392.
[Crossref]

Groß, S.

S. Groß, J. Delanoe, and L. Hirsch, “Airborne remote sensing of clouds and precipitation using Ka- and W-band,” in Conference on Radar Meteorology (2015).

Guo, P.

Guo, Q.

Hasch, J.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Hirsch, L.

S. Groß, J. Delanoe, and L. Hirsch, “Airborne remote sensing of clouds and precipitation using Ka- and W-band,” in Conference on Radar Meteorology (2015).

Huo, Q. L.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Iwatsuki, K.

Jiang, G.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Kani, J.-i.

Klugmann, D.

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

Kohmura, A.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Kuri, M.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Lanteri, J.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Leaird, D. E.

Leuther, A.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Li, Q.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Li, R.

Li, S.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Li, W.

Li, Y.

Liang, X.

Liao, J.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Luan, Y.

Marra, A. C.

A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
[Crossref]

Marra, G. P.

A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
[Crossref]

Mayhan, J. T.

W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).

Mazouni, K.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Mencia-Oliva, B.

B. Mencia-Oliva, J. Grajal, and A. Badolato, “100-GHz FMCW Radar Front-End for ISAR and 3D Imaging,” in Proceedings of IEEE National Radar Conference (IEEE, 2011), pp. 389–392.
[Crossref]

Migliaccio, C.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Moyna, B. P.

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

Mu, X. H.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

O’Donnell, R. M.

W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).

Oldfield, M.

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

Pan, S.

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, B. Gao, and S. Pan, “Two-bit Photonic Digital-to-Analog Conversion Unit based on Polarization Multiplexing,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper AM1G.5.
[Crossref]

Pichot, C.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Prodi, F.

A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
[Crossref]

Raptis, A.

N. S. Gopalsami and A. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001).
[Crossref]

Rashidinejad, A.

Rea, S.

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

Riessle, M.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Rosch, M.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Schlechtweg, M.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Schnabel, R.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Shi, J.

Sommer, R.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Stulz, H.-P.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Sun, J.

Suzuki, H.

Takachio, N.

Teshima, M.

Tessmann, A.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Tian, Y.

Topak, E.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Underhill, M. J.

J. K. Christensen and M. J. Underhill, “Phase coded pulse Doppler and continuous wave 77 GHz radar measurement and analysis facility,” in Proceedings of IEEE Conference on Radar Sonar and Navigation (IEEE, 2004), pp. 365–374.
[Crossref]

Wagner, S.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Waldschmidt, C.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Wang, C.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Wang, H.

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

Wang, Z.

Weigel, R.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Weiner, A. M.

Weismann-Thaden, B.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Wen, Z.

Wilcke, J.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Wun, J.

Xing, T.

Yacoubian, A.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photonics Technol. Lett. 15(1), 117–119 (2003).
[Crossref]

Yang, B.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Yang, C.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Yang, D.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Yang, X.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.
[Crossref]

Yonemoto, N.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Yu, S.

Zeitler, A.

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

Zhang, F.

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, B. Gao, and S. Pan, “Two-bit Photonic Digital-to-Analog Conversion Unit based on Polarization Multiplexing,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper AM1G.5.
[Crossref]

Zhang, G.

Zhang, H.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.
[Crossref]

Zheng, X.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Zhou, B.

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

Zhou, L.

Zhou, P.

Zhu, Y.

Zink, M.

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

Zwick, T.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

Eur. J. Remote Sens. (1)

A. C. Marra, G. P. Marra, and F. Prodi, “Numerical scattering simulations for interpreting simultaneous observations of clouds by a W-band spaceborne and a C-band ground radar,” Eur. J. Remote Sens. 46(6), 909–927 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photonics Technol. Lett. 15(1), 117–119 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012).
[Crossref]

N. S. Gopalsami and A. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001).
[Crossref]

D. Bleh, M. Rosch, M. Kuri, A. Dyck, A. Tessmann, A. Leuther, S. Wagner, B. Weismann-Thaden, H.-P. Stulz, M. Zink, M. Riessle, R. Sommer, J. Wilcke, M. Schlechtweg, B. Yang, and O. Ambacher, “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Tech. 65(9), 3474–3484 (2017).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Int. J. Microw. Wireless Trans. (1)

K. Mazouni, A. Zeitler, J. Lanteri, C. Pichot, J. Dauvignac, C. Migliaccio, N. Yonemoto, A. Kohmura, and S. Futatsumori, “76.5 GHz millimeter-wave radar for foreign objects debris detection on airport runways,” Int. J. Microw. Wireless Trans. 4(3), 317–326 (2012).
[Crossref]

J. Lightwave Technol. (3)

Linc. Lab. J. (1)

W. W. Camp, J. T. Mayhan, and R. M. O’Donnell, “Wideband radar for ballistic missile defense and range-Doppler imaging of satellites,” Linc. Lab. J. 12(2), 267–280 (2000).

Opt. Express (2)

Optica (1)

Other (11)

B. Mencia-Oliva, J. Grajal, and A. Badolato, “100-GHz FMCW Radar Front-End for ISAR and 3D Imaging,” in Proceedings of IEEE National Radar Conference (IEEE, 2011), pp. 389–392.
[Crossref]

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle (SciTech Publishing, 2010).

V. C. Chen and M. Martorella, Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications (SciTech Publishing, 2014).

X. Xiao, S. Li, B. Chen, X. Yang, D. Wu, X. Xue, X. Zheng, and B. Zhou, “A Microwave Photonics-based Inverse Synthetic Aperture Radar system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), papaer JW2A.144.
[Crossref]

J. K. Christensen and M. J. Underhill, “Phase coded pulse Doppler and continuous wave 77 GHz radar measurement and analysis facility,” in Proceedings of IEEE Conference on Radar Sonar and Navigation (IEEE, 2004), pp. 365–374.
[Crossref]

S. Groß, J. Delanoe, and L. Hirsch, “Airborne remote sensing of clouds and precipitation using Ka- and W-band,” in Conference on Radar Meteorology (2015).

D. Klugmann, H. Wang, S. Rea, B. P. Moyna, and M. Oldfield, Oldfield, P. G. Huggard, and B. N. Ellison. “A solid state W-band radar profiler for cloud observation,” in Proceedings of International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2015), pp. 1–2.

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.
[Crossref]

J. Liao, B. Chen, S. Li, X. Yang, X. Zheng, H. Zhang, and B. Zhou, “Novel Photonic Radio-frequency Arbitrary Waveform Generation based on Photonic Digital-to-Analog Conversion with Pulse Carving,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper STh4F.4.
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Two-bit Photonic Digital-to-Analog Conversion Unit based on Polarization Multiplexing,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper AM1G.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed W-band radar system. (b) Schematic configuration of the LOPDAC. (c) Illustration showing a rate-doubled signal ( i m ) generated by logical operation of two lower-rate digital signals ( s 11 , s 12 ). LOPDAC: logic-operation-based photonic digital-to-analog converter; LD: laser diode; IM: intensity modulator; PM: phase modulator, Amp: amplifier; EDFA: erbium-doped fiber amplifier; OBPF: optical band-pass filter; MZM: Mach-Zehnder modulator; PD: photodetector; BPF: band-pass filter; PA: power amplifier; HA: horn antenna; SG: signal generator; PDAC: photonic digital-to-analog converter; PS: power splitter; DPMZM: dual-parallel MZM; LPF: low-pass filter; ADC: analog-to-digital converter; DSP: digital signal processing; LNA: low noise amplifier; OC: optical coupler; DMZM: dual-drive MZM.
Fig. 2
Fig. 2 Generation of the LFMW with a bandwidth of 8 GHz (2-10GHz), a pulse width of 9.9us and a period of 10us. (a)The waveform and (b) the instantaneous frequency of the generated LFMW.
Fig. 3
Fig. 3 The spectrum of the W-band LFMW with a bandwidth of 8 GHz (89-97 GHz)
Fig. 4
Fig. 4 Configuration for detecting two metallic mirrors placed at a distance of ~0.80 m away from the antenna pair.
Fig. 5
Fig. 5 (a) spectrum of the de-chirped echo from two metallic mirrors separated by 2.7 cm; (b) spectrum of the de-chirped echo from two metallic mirrors separated by 1.9 cm.
Fig. 6
Fig. 6 (a) Configuration of detecting two rotating TCRs; (b) ISAR image of two rotating TCRs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E out (t)= E in ( t ) 2 { rect( t T p ) J 1 ( m 1 )cos[ 2π*( f 0 ( t )+ 1 2 k t 2 ) ] +rect( tτ T p ) J 1 ( m 2 )*cos[ 2π*( f 0 ( tτ )+ 1 2 k ( tτ ) 2 ) ] }
δ r = c 2B
δ a = c 2ω T i f c = c 2θ f c
E out ( t )= E in ( t )*cos[ β 1 s 11 ( t ) β 2 s 12 ( tT/2 )θ 2 ]exp[ j β 1 s 11 ( t )+ β 2 s 12 ( tT/2 )+θ 2 ]
i( t ) E out ( t ) E out * ( t ) ={ 0for s 11 ( t )= s 12 ( tT/2 ) 1for s 11 ( t ) s 12 ( tT/2 )
{ i(2m)= s 11 (m) s 12 (m) i(2m1)= s 11 (m) s 12 (m1)

Metrics