Abstract

Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 μm. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10 × 10 mm2. We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90 % on 56 nm thick mirrors at a wavelength of 1550 nm–an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optomechanical and photothermal interactions in suspended photonic crystal membranes

David Woolf, Pui-Chuen Hui, Eiji Iwase, Mughees Khan, Alejandro W. Rodriguez, Parag Deotare, Irfan Bulu, Steven G. Johnson, Federico Capasso, and Marko Loncar
Opt. Express 21(6) 7258-7275 (2013)

Suspended 2-D photonic crystal aluminum nitride membrane reflector

Chong Pei Ho, Prakash Pitchappa, Bo Woon Soon, and Chengkuo Lee
Opt. Express 23(8) 10598-10603 (2015)

Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors

Sora Kim, Sanja Hadzialic, Aasmund S. Sudbo, and Olav Solgaard
Opt. Express 20(6) 6306-6315 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  2. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
    [Crossref]
  3. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref] [PubMed]
  4. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
    [Crossref]
  5. J. Guo, R. A. Norte, and S. Gröblacher, “Integrated optical force sensors using focusing photonic crystal arrays,” Opt. Express 25, 9196–9203 (2017).
    [Crossref] [PubMed]
  6. X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
    [Crossref]
  7. R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
    [Crossref] [PubMed]
  8. C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).
  9. S. Bernard, C. Reinhardt, V. Dumont, Y.-A. Peter, and J. C. Sankey, “Precision resonance tuning and design of sin photonic crystal reflectors,” Opt. Lett. 41, 5624–5627 (2016).
    [Crossref] [PubMed]
  10. U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
    [Crossref]
  11. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
    [Crossref]
  12. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).
  13. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
    [Crossref]
  14. S. Reid and I. W. Martin, “Development of mirror coatings for gravitational wave detectors,” Coatings 6, 61 (2016).
    [Crossref]
  15. P.-Y. Madec, “Overview of deformable mirror technologies for adaptive optics and astronomy,” Proc. SPIE 8447, 844705 (2012).
  16. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
    [Crossref] [PubMed]
  17. X. Fan, ed., Advanced Photonic Structures for Biological and Chemical Detection (Springer-Verlag, 2009), 1st ed.
    [Crossref]
  18. R. A. Norte, “Nanofabrication for on-chip optical levitation, atom-trapping, and superconducting quantum circuits,” Ph.D. thesis, California Institute of Technology (2014).
  19. “Method for fabrication of large-aspect-ratio nano-thickness mirrors,” Patent pending.
  20. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  21. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), 6th ed.
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  23. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010).
    [Crossref]
  24. “Breakthrough Initiative – Starshot,” https://breakthroughinitiatives.org/Initiative/3 . Accessed January 2018.
  25. H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994).
    [Crossref] [PubMed]
  26. S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
    [Crossref] [PubMed]
  27. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
    [Crossref]
  28. D. R. Rhodes, “On a fundamental principle in the theory of planar antennas,” Proc. IEEE 52, 1013–1021 (1964).
    [Crossref]
  29. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  30. The LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
    [Crossref]
  31. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437 (1990).
    [Crossref]
  32. D. J. Wilson, “Cavity optomechanics with high-stress silicon nitride films,” Ph.D. thesis, California Institute of Technology (2012).
  33. S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
    [Crossref]
  34. M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
    [Crossref]

2017 (3)

2016 (4)

S. Reid and I. W. Martin, “Development of mirror coatings for gravitational wave detectors,” Coatings 6, 61 (2016).
[Crossref]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

S. Bernard, C. Reinhardt, V. Dumont, Y.-A. Peter, and J. C. Sankey, “Precision resonance tuning and design of sin photonic crystal reflectors,” Opt. Lett. 41, 5624–5627 (2016).
[Crossref] [PubMed]

2015 (1)

The LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
[Crossref]

2014 (2)

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

2012 (5)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

P.-Y. Madec, “Overview of deformable mirror technologies for adaptive optics and astronomy,” Proc. SPIE 8447, 844705 (2012).

2011 (1)

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

2010 (3)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010).
[Crossref]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

2009 (1)

2002 (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

1997 (1)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

1994 (1)

H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994).
[Crossref] [PubMed]

1990 (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437 (1990).
[Crossref]

1981 (1)

1964 (1)

D. R. Rhodes, “On a fundamental principle in the theory of planar antennas,” Proc. IEEE 52, 1013–1021 (1964).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Bao, M.

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

Barbosa, F. A. S.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Bernard, S.

Bloom, B. J.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Boisen, A.

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), 6th ed.

Bourassa, A.

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

Braive, R.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Briant, T.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Bryant, A.

Bui, C. H.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Caër, C.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Campbell, S. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Cardenas, J.

Chakram, S.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

Chang, L.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Chardin, C.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Chase, C.

Cheben, P.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Chen, X.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Chua, S.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Cohadon, P.-F.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Darkwah Oppong, N.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Delâge, A.

Deléglise, S.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Densmore, A.

Dumont, V.

Durand, M.

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

Dutt, A.

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Gaeta, A. L.

García, J.

Gaylord, T. K.

Goban, A.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Gröblacher, S.

J. Guo, R. A. Norte, and S. Gröblacher, “Integrated optical force sensors using focusing photonic crystal arrays,” Opt. Express 25, 9196–9203 (2017).
[Crossref] [PubMed]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

Guo, J.

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Harris, J. G. E.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Heidmann, A.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Hoch, S. W.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Hutson, R. B.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Jacqmin, T.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Janz, S.

Jensen, K. D.

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

Ji, X.

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Karagodsky, V.

Kemiktarak, U.

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Lapointe, J.

Lawall, J.

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

Lee, L. Y. T.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Li, Y.

Lipson, M.

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Lopinski, G.

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010).
[Crossref]

Lu, F.

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Madec, P.-Y.

P.-Y. Madec, “Overview of deformable mirror technologies for adaptive optics and astronomy,” Proc. SPIE 8447, 844705 (2012).

Makles, K.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Marti, G. E.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Martin, I. W.

S. Reid and I. W. Martin, “Development of mirror coatings for gravitational wave detectors,” Coatings 6, 61 (2016).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

McNally, R. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Metcalfe, M.

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

Mischki, T.

Moharam, M. G.

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Moura, J. P.

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

Müller, T.

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

Nielsen, K. H.

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

Norte, R. A.

J. Guo, R. A. Norte, and S. Gröblacher, “Integrated optical force sensors using focusing photonic crystal arrays,” Opt. Express 25, 9196–9203 (2017).
[Crossref] [PubMed]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

R. A. Norte, “Nanofabrication for on-chip optical levitation, atom-trapping, and superconducting quantum circuits,” Ph.D. thesis, California Institute of Technology (2014).

Okawachi, Y.

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Paddon, P.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Patil, Y. S.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

Peter, Y.-A.

Poitras, D.

Reid, S.

S. Reid and I. W. Martin, “Development of mirror coatings for gravitational wave detectors,” Coatings 6, 61 (2016).
[Crossref]

Reinhardt, C.

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

S. Bernard, C. Reinhardt, V. Dumont, Y.-A. Peter, and J. C. Sankey, “Precision resonance tuning and design of sin photonic crystal reflectors,” Opt. Lett. 41, 5624–5627 (2016).
[Crossref] [PubMed]

Rhodes, D. R.

D. R. Rhodes, “On a fundamental principle in the theory of planar antennas,” Proc. IEEE 52, 1013–1021 (1964).
[Crossref]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Robert-Philip, I.

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Roberts, S. P.

Robinson, J. M.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Sankey, J. C.

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

S. Bernard, C. Reinhardt, V. Dumont, Y.-A. Peter, and J. C. Sankey, “Precision resonance tuning and design of sin photonic crystal reflectors,” Opt. Lett. 41, 5624–5627 (2016).
[Crossref] [PubMed]

Saulson, P. R.

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437 (1990).
[Crossref]

Schmid, J. H.

Schmid, S.

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

Sedgwick, F. G.

Sinclair, W.

Sonderhouse, L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Sun, Y.

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Vengalattore, M.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

Waldron, P.

Wilson, D. J.

D. J. Wilson, “Cavity optomechanics with high-stress silicon nitride films,” Ph.D. thesis, California Institute of Technology (2012).

Wiseman, H. M.

H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), 6th ed.

Wong, C. W.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Xu, D.-X.

Yang, H.

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Yin, H.

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

Young, J. F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

Zhang, W.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Zheng, J.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Appl. Phys. Lett. (2)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[Crossref]

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. W. Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett. 100, 021110 (2012).
[Crossref]

Class. Quantum Grav. (1)

The LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
[Crossref]

Coatings (1)

S. Reid and I. W. Martin, “Development of mirror coatings for gravitational wave detectors,” Coatings 6, 61 (2016).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

J. Micromech. Microeng. (1)

M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12, 341–346 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photon. Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010).
[Crossref]

Light Sci. Appl. (1)

X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann, T. Jacqmin, and S. Deléglise, “High-finesse Fabry-Perot cavities with bidimensional Si3N4 photonic-crystal slabs,” Light Sci. Appl. 6, e16190 (2017).
[Crossref]

Nat. Photon. (2)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4, 466–470 (2010).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

New J. Phys. (1)

U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Cavity optomechanics with sub-wavelength grating mirrors,” New J. Phys. 14, 125010 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994).
[Crossref] [PubMed]

Phys. Rev. B (2)

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Phys. Rev. D (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437 (1990).
[Crossref]

Phys. Rev. Lett. (2)

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112, 127201 (2014).
[Crossref] [PubMed]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise SiN trampoline MEMS for sensing and optomechanics,” Phys. Rev. X 6, 021001 (2016).

Proc. IEEE (1)

D. R. Rhodes, “On a fundamental principle in the theory of planar antennas,” Proc. IEEE 52, 1013–1021 (1964).
[Crossref]

Proc. SPIE (1)

P.-Y. Madec, “Overview of deformable mirror technologies for adaptive optics and astronomy,” Proc. SPIE 8447, 844705 (2012).

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Other (7)

“Breakthrough Initiative – Starshot,” https://breakthroughinitiatives.org/Initiative/3 . Accessed January 2018.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), 6th ed.

D. J. Wilson, “Cavity optomechanics with high-stress silicon nitride films,” Ph.D. thesis, California Institute of Technology (2012).

X. Fan, ed., Advanced Photonic Structures for Biological and Chemical Detection (Springer-Verlag, 2009), 1st ed.
[Crossref]

R. A. Norte, “Nanofabrication for on-chip optical levitation, atom-trapping, and superconducting quantum circuits,” Ph.D. thesis, California Institute of Technology (2014).

“Method for fabrication of large-aspect-ratio nano-thickness mirrors,” Patent pending.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A fermi-degenerate three-dimensional optical lattice clock,” arXiv:1702.01210 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 PhC mirrors and characterization setup. (a) Sketch of a suspended PhC mirror (top) and a photograph of a 10 mm-wide, 210 nm-thick PhC mirror next to a commercial 1/2 inch mirror for size comparison (bottom). The rectangular shaped patterns within the PhC are stitching errors from the mainfields of the beamwrite, which do not affect the measured reflectivity significantly. The inset shows a scanning electron microscope picture of the actual photonic crystal. The full mirror is made up of around 6 · 107 holes. (b) Illustration of the cross section of the mirror. The thin membrane is made of SiN and is supported by a silicon chip. (c) FDTD simulation of a reflected light mode on a PhC membrane. (d) Simplified setup used to characterize the reflection of PhC mirrors. We focus a wavelength-tunable laser beam perpendicularly onto the membrane. The radius of the incident beam is controlled with a lens system. For each radius, we acquire the reflection (D2) and transmission (D3) in relation to a reference beam (D1) that is split off the laser output using a polarization beam splitter. More details can be found in Appendix A.
Fig. 2
Fig. 2 Reflectivity spectra of the PhC mirrors. Shown is a selection of measured reflectivity spectra of PhC mirrors with film thickness of (a) 210 nm and (b) 56 nm. Each spectrum shows the reflection of a Gaussian beam with the specified waist. As the waist increases, the incident beam approaches the behavior of a plane wave, for which the devices are optimal, and so the maximum reflectivity increases. Due to the finite size of the 56 nm PhC mirror, its reflectivity drops as the incident beam becomes larger than the PhC area. The data were digitally processed to remove parasitic interferences from the substrate (see Appendix C for details).
Fig. 3
Fig. 3 Maximum reflectivity as a function of incident beam waist. We show the maximum reflectivity for several PhC thicknesses and membrane sizes, highlighting the potential of these structures as large-area, high-reflectivity mirrors. For comparison, we include simulations, represented by lines, obtained from plane wave decomposition of Gaussian beams using RCWA. The reflectivity of the 56 nm-thick PhC mirror decreases when the optical beam becomes comparable to the PhC diameter, underlining the importance of finite size effects. The measured data have an uncertainty in reflectivity of ±0.6 %. The uncertainty in the beam radii results from propagating the estimated uncertainties in the positions of the lens sets. For more details see Appendix A.
Fig. 4
Fig. 4 Schematic of the complete characterization setup. See text for a detailed description.
Fig. 5
Fig. 5 Measured mode spectrum. Shown is the spectrum of the back reflected light from a 4 × 4 mm2 PhC sample detected with a homodyne detector. The optical power for this measurement was set to 1 mW, the resolution bandwidth to 100 Hz and the spectrum was averaged 50 times. The device was driven with a piezo actuator connected to a white noise generator (peak-to-peak voltage 100 mV) inside a vacuum chamber at 1 · 10−5 mbar. Electronic and displacement noise from the mounting-frame were subtracted from the displayed data. We calibrated the noise from the mounting-frame by measuring a spectrum with the laser beam focused on the frame. The purple trace (top) shows data obtained with the laser focused in the center of the device, while for the green trace (bottom) the laser was focused onto the edge of the PhC mirror. The latter was done to record modes which have no net-effect on the reflected beam, i.e. a (2, 2) mode. The theoretically expected mode frequencies are highlighted on the upper horizontal axis and match the measured spectrum very closely.
Fig. 6
Fig. 6 Unprocessed reflectivity spectra of the PhC mirrors.
Fig. 7
Fig. 7 Fourier transformations of the unprocessed optical spectra.
Fig. 8
Fig. 8 Filtered reflectivity spectra of the PhC mirrors.
Fig. 9
Fig. 9 Unprocessed reflectivity spectra of the 210 nm-thick, 10 mm-wide device.
Fig. 10
Fig. 10 Reflectivity simulations for PhC membranes. Reflectivity spectra for s- and p-polarized Gaussian beams of waist w0. Panel (a) and (b) show data for a 56 nm and 210 nm membrane, respectively.
Fig. 11
Fig. 11 Extracted peak reflectivity compared to measured data. Shown is the same data as in the main text with additional simulations for various polarizations.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R = V PhC / V PhC ref V cal / V cal ref × R cal ,
Δ R = x ( R ( x ) x Δ x ) 2 0.006 ,
ω m = 2 π 2 L σ ρ ,
E s cos ( θ ) / cos ( ϕ )
E p sin ( θ )
E s sin ( θ ) / cos ( ϕ )
E p cos ( θ )
E ( x , y ) = 2 π w 0 2 e x 2 + y 2 w 0 2
E ( k x , k y ) = E ( x , y ) e ι ( k x x + k y y 2 π c 0 λ t + ϕ ) d x d y .
R s , p ( λ , w 0 ) = | r s , p ( ϕ , θ , λ ) | 2 e 1 2 ( w 0 r sin ( ϕ ) ) 2 sin ( ϕ ) d θ d ϕ e 1 2 ( w 0 r sin ( ϕ ) ) 2 sin ( ϕ ) d θ d ϕ .
S x ( ω ) = 4 k B T m eff ω m / Q m eff 2 ( ( ω 2 ω m 2 ) 2 + ( ω m ω / Q ) 2 ) ,
Q p = ( π 2 ) 3 2 ρ h ω m 2 π R T m g 1 p ,

Metrics