Abstract

Graphene gratings provide a promising route towards the miniaturization of THz metasurfaces and other photonic devices, chiefly due to remarkable optical properties of graphene. In this paper, we propose novel graphene nanostructures for passive and active control of the polarization state of THz waves. The proposed devices are composed of two crossed graphene gratings separated by an insulator spacer. Because of specific linear and nonlinear properties of graphene, these optical metasurfaces can be utilized as ultrathin polarization converters operating in the THz frequency domain. In particular, our study shows that properly designed graphene polarizers can effectively select specific polarization states, their thickness being about a tenth of the operating wavelength and size more than 80× smaller than that of similar metallic devices. Equally important, we demonstrate that the nonlinear optical properties of graphene can be utilized to actively control the polarization state of generated higher harmonics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals

Yun-Yun Ji, Fei Fan, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(10) 12852-12862 (2018)

Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials

Fang Zeng, Longfang Ye, Li Li, Zhihui Wang, Wei Zhao, and Yong Zhang
Opt. Express 27(23) 33826-33839 (2019)

Actively controllable terahertz switches with graphene-based nongroove gratings

Linbao Luo, Kuiyuan Wang, Caiwang Ge, Kai Guo, Fei Shen, Zhiping Yin, and Zhongyi Guo
Photon. Res. 5(6) 604-611 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  4. K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
    [Crossref] [PubMed]
  5. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  6. F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
    [Crossref] [PubMed]
  7. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
    [Crossref] [PubMed]
  8. G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
    [Crossref] [PubMed]
  9. M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
    [Crossref]
  10. S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).
  11. J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
    [Crossref]
  12. J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
    [Crossref] [PubMed]
  13. J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
    [Crossref] [PubMed]
  14. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
    [Crossref] [PubMed]
  15. G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
    [Crossref]
  16. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  17. P. A. D. Goncalves and N. M. Peres, An introduction to graphene plasmonics(World Scientific, 2016).
    [Crossref]
  18. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
    [Crossref]
  19. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
    [Crossref]
  20. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
    [Crossref] [PubMed]
  21. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  22. P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
    [Crossref]
  23. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  24. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  25. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref]
  26. W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
    [Crossref]
  27. J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
    [Crossref] [PubMed]
  28. K. E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging(Springer-Verlag, 2013).
    [Crossref]
  29. D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
    [Crossref]
  30. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  31. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref] [PubMed]
  32. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
    [Crossref]
  33. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
    [Crossref]
  34. Y. Li, J. Zhao, H. Lin, W. Milne, and Y. Hao, “Tunable circular polarization selective surfaces for low-THz applications using patterned graphene,” Opt. Express 23(6), 7227–7236 (2015).
    [Crossref] [PubMed]
  35. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  36. F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
    [Crossref] [PubMed]
  37. M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
    [Crossref]
  38. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  39. B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
    [Crossref]
  40. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  41. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett. 32(23), 3414–3416 (2007).
    [Crossref] [PubMed]
  42. P. G. Thompson, C. G. Biris, E. J. Osley, O. Gaathon, R. M. Osgood, N. C. Panoiu, and P. A. Warburton, “Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures,” Opt. Express 19(25), 25035–25047 (2011).
    [Crossref]
  43. R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
    [Crossref]
  44. Y. Zhao and A. Alu, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical metawaveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  45. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).
  46. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
    [Crossref]
  47. W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
    [Crossref]
  48. Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25(13), 14300–14307 (2017).
    [Crossref] [PubMed]
  49. X. J. Shang, X. Zhai, J. Yue, X. Luo, J. P. Liu, X. P. Zhu, H. G. Duan, and L. L. Wang, “Broad-band and high-efficiency polarization converters around 1550 nm based on composite structures,” Opt. Express 25(13), 14406–14413 (2017).
    [Crossref] [PubMed]
  50. M. R. Querry, “Optical constants,” Contractor Report 415, 1001 (1985).
  51. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).
  52. J. W. You and N. C. Panoiu are preparing a manuscript to be called “Computational analysis of dispersive and nonlinear 2D materials by using a novel GS-FDTD method.”
  53. J. A. Kong, Electromagnetic wave theory (EMW Publishing, Massachusetts, 2008).

2017 (6)

J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
[Crossref] [PubMed]

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25(13), 14300–14307 (2017).
[Crossref] [PubMed]

X. J. Shang, X. Zhai, J. Yue, X. Luo, J. P. Liu, X. P. Zhu, H. G. Duan, and L. L. Wang, “Broad-band and high-efficiency polarization converters around 1550 nm based on composite structures,” Opt. Express 25(13), 14406–14413 (2017).
[Crossref] [PubMed]

2016 (7)

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
[Crossref] [PubMed]

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
[Crossref] [PubMed]

2015 (4)

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Y. Li, J. Zhao, H. Lin, W. Milne, and Y. Hao, “Tunable circular polarization selective surfaces for low-THz applications using patterned graphene,” Opt. Express 23(6), 7227–7236 (2015).
[Crossref] [PubMed]

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

2014 (3)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
[Crossref]

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

2013 (8)

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Y. Zhao and A. Alu, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical metawaveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (5)

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

P. G. Thompson, C. G. Biris, E. J. Osley, O. Gaathon, R. M. Osgood, N. C. Panoiu, and P. A. Warburton, “Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures,” Opt. Express 19(25), 25035–25047 (2011).
[Crossref]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

2009 (2)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

2008 (3)

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

2007 (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett. 32(23), 3414–3416 (2007).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

1985 (1)

M. R. Querry, “Optical constants,” Contractor Report 415, 1001 (1985).

Adams, M. M.

Altug, H.

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

Alu, A.

Y. Zhao and A. Alu, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical metawaveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Amorim, B.

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

Avouris, P.

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Bao, Q.

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Berger, C.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Biris, C. G.

Blank, V.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

Bludov, Y. V.

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Borondics, F.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Chang, L. Z.

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Chen, M.

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Chen, S.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, Y.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Chen, Z. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Cheng, H.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, J. L.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
[Crossref]

Chiu, H. Y.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Choi, H.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Chua, L. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Clark, J.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

Cox, J. D.

J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
[Crossref] [PubMed]

Dadap, J. I.

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

de Abajo, F. J. G.

J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
[Crossref] [PubMed]

De Heer, W. A.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Deng, L.

Dias, E. J. C.

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Dimitrakopoulos, C.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Duan, H. G.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Faist, J.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Fal, V. I.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

Fan, X.

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

Farmer, D. B.

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Friend, R. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Gaathon, O.

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

George, P.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Godbout, N.

Goh, R. G.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Goncalves, P. A. D.

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

P. A. D. Goncalves and N. M. Peres, An introduction to graphene plasmonics(World Scientific, 2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grill, A.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Guo, J.

Guo, Q.

Guo, Z.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

Hahn, R.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hao, Y.

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, D.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Ho, P. K.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Hone, J.

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Hong, S. Y.

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Huang, K.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Jenkins, K. A.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jiang, Y.

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kaindl, R. A.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

Kim, P.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Knorr, A.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Kockaert, P.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

J. A. Kong, Electromagnetic wave theory (EMW Publishing, Massachusetts, 2008).

Kossacki, P.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Kulkarni, G. S.

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

K. E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging(Springer-Verlag, 2013).
[Crossref]

Kuzmenko, A. B.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Lanzara, A.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, L.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, R.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Li, T.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Li, Y.

Y. Li, J. Zhao, H. Lin, W. Milne, and Y. Hao, “Tunable circular polarization selective surfaces for low-THz applications using patterned graphene,” Opt. Express 23(6), 7227–7236 (2015).
[Crossref] [PubMed]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Li, Z.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lim, G. K.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Lin, H.

Lin, Y. M.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

Ling, F.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
[Crossref] [PubMed]

Liu, H.

Liu, J. P.

Liu, P. Q.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Liu, W.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liu, X.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Liu, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Liu, Z.

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Low, T.

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Luo, X.

Luo, Y.

Malic, E.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martin, M. C.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Martin-Moreno, L.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Massar, S.

Milne, W.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ng, W. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nikitin, A. Y.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Orlita, M.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Osgood, R. M.

Osley, E. J.

Panoiu, N. C.

Peiponen, K. E.

K. E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging(Springer-Verlag, 2013).
[Crossref]

Peres, N. M.

P. A. D. Goncalves and N. M. Peres, An introduction to graphene plasmonics(World Scientific, 2016).
[Crossref]

Peres, N. M. R.

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Petrone, N.

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

Ping, L. K.

Plochocka, P.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Potemski, M.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Poumirol, J. M.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Pu, Y.

Qu, S.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Qu, Y.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Querry, M. R.

M. R. Querry, “Optical constants,” Contractor Report 415, 1001 (1985).

Rabia, K.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

Rajkumar, R.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rana, F.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Reddy, K.

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Rodrigo, D.

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

Roskos, H. G.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

Roth, R. M.

Schlickriede, C.

Schwab, M. G.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

Schwierz, F.

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

Shang, X. J.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Siegel, D. A.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Silveiro, I.

J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
[Crossref] [PubMed]

Sipe, J. E.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
[Crossref]

Slipchenko, T. M.

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Sprinkle, M.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Strait, J.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Subramanian, V.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

Tan, H. W.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tang, X. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Thompson, P. G.

Thomson, M. D.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

Tian, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Vasilevskiy, M. I.

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

Veksler, D.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Vermeulen, N.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
[Crossref]

Virally, S.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, C. Y.

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Wang, D.

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, L. L.

Wang, Q. J.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, S. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, W.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Wang, X.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Warburton, P. A.

Weismann, M.

J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
[Crossref] [PubMed]

Winnerl, S.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Winzer, T.

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xiang, Y.

Xiao, X. F.

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xu, D.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Xu, J.

Xu, Y.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yang, C.

Yang, D.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Yao, G.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
[Crossref] [PubMed]

Yao, J.

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
[Crossref] [PubMed]

Yeh, P. C.

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

Yogesh, N.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

You, J.

J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
[Crossref] [PubMed]

You, J. W.

J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
[Crossref] [PubMed]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, X.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yue, J.

Zeitler, A.

K. E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging(Springer-Verlag, 2013).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Zentgraf, T.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, X.

Zhang, A.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Zhang, H.

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, J.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Zhang, S.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, D. P.

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Zhao, J.

Zhao, Y.

Y. Zhao and A. Alu, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical metawaveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Zhong, M.

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Zhong, Z.

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, S. Y.

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

Zhu, S. N.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zhu, X. P.

Zouaghi, W.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

ACS Nano (2)

J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10(2), 1995–2003 (2016).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Appl. Phys. Lett. (3)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett. 94(17), 172102 (2009).
[Crossref]

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Appl. Sci (1)

B. Amorim, P. A. D. Goncalves, M. I. Vasilevskiy, and N. M. R. Peres, “Impact of graphene on the polarizability of a neighbour nanoparticle: a dyadic Green’s function study,” Appl. Sci.  7(11), 1158 (2017).
[Crossref]

Contractor Report (1)

M. R. Querry, “Optical constants,” Contractor Report 415, 1001 (1985).

Eur. J. Phys (1)

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys.  34(6), S179 (2013).
[Crossref]

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

J. Optics (1)

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Optics 17(6), 065103 (2015).
[Crossref]

Light Sci. Appl. (1)

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Nano Energy (1)

M. Zhong, D. Xu, X. Yu, K. Huang, X. Liu, Y. Qu, Y. Xu, and D. Yang, “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells,” Nano Energy 28, 12–18 (2016).
[Crossref]

Nano Lett. (1)

Y. Zhao and A. Alu, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical metawaveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Nat. Commun (1)

G. S. Kulkarni, K. Reddy, Z. Zhong, and X. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat. Commun.  5, 4376 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419),192–200 (2012).
[Crossref] [PubMed]

New J. Phys (1)

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.  16(5), 053014 (2014).
[Crossref]

Opt. Commun. (1)

M. Chen, X. F. Xiao, L. Z. Chang, C. Y. Wang, and D. P. Zhao, “High-efficient and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394(1), 50–55 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phil. Trans. R. Soc. A (1)

J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant enhancement of third-harmonic generation in graphene nanostructures,” Phil. Trans. R. Soc. A 375(2090), 20160313 (2017).
[Crossref] [PubMed]

Phys. Rev. B (2)

D. Rodrigo, T. Low, D. B. Farmer, H. Altug, and P. Avouris, “Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays,” Phys. Rev. B 93(12), 125407 (2016).
[Crossref]

P. A. D. Goncalves, E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Phys. Rev. Lett. (2)

S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, and W. A. De Heer, “Carrier relaxation in epitaxial graphene photoexcited near the Dirac point,” Phys. Rev. Lett. 107(23), 237401 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3(2), 021014 (2013).

Sci. Rep (1)

F. Ling, G. Yao, and J. Yao, “Active tunable plasmonically induced polarization conversion in the THz regime,” Sci. Rep.  6, 34994 (2016).
[Crossref] [PubMed]

Science (4)

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science 327(5966), 662 (2010).
[Crossref] [PubMed]

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 16, 1235399 (2013).

Solid State Commun (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.  146(9), 351–355 (2008).
[Crossref]

Other (5)

P. A. D. Goncalves and N. M. Peres, An introduction to graphene plasmonics(World Scientific, 2016).
[Crossref]

K. E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging(Springer-Verlag, 2013).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

J. W. You and N. C. Panoiu are preparing a manuscript to be called “Computational analysis of dispersive and nonlinear 2D materials by using a novel GS-FDTD method.”

J. A. Kong, Electromagnetic wave theory (EMW Publishing, Massachusetts, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of a crossed graphene polarizer consisting of two optical gratings made of graphene nanoribbons separated by a dielectric thin film. The polarization angle of the incident light is α, and one unit cell of this metasurface with periods L1 and L2 is depicted in the inset. The widths of the graphene nanoribbons of the top and bottom gratings are W1 and W2, respectively.
Fig. 2
Fig. 2 Linear spectra of absorption (A, dotted line), reflectance (R, continuous line), and transmittance (T, dashed line) of a crossed graphene polarizer, calculated for three values of the incidence polarization angle: α = 0 (red lines), α = π/4 (blue lines), and α = π/2 (green lines). The values of all the geometrical and material parameters of the structure are provided in the text.
Fig. 3
Fig. 3 a), b) Schematics of the unit cell of a polarizer based on metal and graphene, respectively. c), d) Reflectance spectra of metal and graphene based polarizers, respectively, determined for different polarization angles of the incident wave.
Fig. 4
Fig. 4 a) Schematics of a crossed graphene polarizer consisting of two optical gratings made of graphene nanoribbons separated by a thin film made of PMMA. The values of the geometrical parameters of the structure and all material parameters are provided in the text. (b) Linear spectra of absorption (A, dotted line), reflectance (R, continuous line), and transmittance (T, dashed line) corresponding to a graphene grating placed on top of PMMA substrate, calculated for three values of the incidence polarization angle: α = 0 (red lines), α = π/4 (blue lines), and α = π/2 (green lines). The spectra marked with diamond symbols show A (citron), R (black), and T (light blue) of the crossed-grating structure and are calculated for α = π/4.
Fig. 5
Fig. 5 Configuration of a crossed-graphene grating that can be used as a polarization converter in reflection. a) An incident linearly polarized beam with polarization angle α = π/4 impinges normally on a crossed-graphene grating, such that the Ex and Ey field components interact primarily with the bottom and top grating, respectively. b) Schematics of the crossed-graphene grating. c) Depending on the value of the phase difference Δφ, one can engineer reflected optical beams with desired polarization state.
Fig. 6
Fig. 6 a) Dependence of the linear phase difference Δφ on z, determined for different values of the thickness of the insulator layer: d = 0.5 µm (red line), d = 1 µm (blue line), d = 1.5 µm (green line), d = 2 µm (purple line), and d = 2.5 µm (cyan line). The solid lines and circles indicate the numerical and analytical results, respectively. b) Phase difference Δφ vs. the ratio d/λ, determined analytically and numerically in the reflection region. In all calculations λ = 23.5 µm corresponds to the plasmon resonance shown in Fig. 4(b).
Fig. 7
Fig. 7 a) Dependence of the nonlinear phase difference Δφ on z, determined for different values of the thickness of the insulator layer: d = 0.5 µm (red line), d = 1 µm (blue line), d = 1.5 µm (green line), d = 2 µm (purple line), and d = 2.5 µm (cyan line). The solid lines and circles indicate the numerical and analytical results, respectively. b) Phase difference Δφ vs. the ratio d/λ, determined analytically and numerically in the reflection region. In all calculations λ = 23.5 µm corresponds to the plasmon resonance shown in Fig. 4(b).
Fig. 8
Fig. 8 Representation on the Poincaré sphere of polarization states described by the nonlinear phase difference Δφ(z). a) Poincaré sphere and the polarization transformation path (red line) when d = 0.8 µm. b), (c), d), e) Polarization transformation paths (red lines) corresponding to d = 0.5 µm, d = 1 µm, d = 2 µm, and d = 2.5 µm, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ i n t r a ( ω , μ c , τ , T ) = i e 2 k B T π 2 ( ω i τ 1 ) [ μ c k B T + 2 ln ( e μ c k B T + 1 ) ] ,
σ i n t e r ( ω , μ c , τ , T ) = i e 2 4 π ln [ 2 | μ c | ( ω i τ 1 ) 2 | μ c | + ( ω i τ 1 ) ] .
σ s ( 3 ) ( Ω , ω ) = i σ 0 ( v F e ) 2 48 π ( ω ) 2 T ( ω 2 | μ c | ) ,
J d , i ( 3 ) ( Ω , ω ) = σ s ( 3 ) ( Ω , ω ) j , k , l = 1 3 Δ i j k l ( 3 ) E j ( ω ) E k ( ω ) E l ( ω ) ,
k s p π 2 e 2 μ c ( ϵ 1 + ϵ 2 ) ω ( ω + i τ 1 ) ,
Δ φ ( z ) = { 0 , z < z b , 4 π n λ ( z z b ) , z b < z < z t , 4 π n λ d , z > z t ,

Metrics