Abstract

The demand for high resolution neutron imaging has been steadily increasing over the past years. The number of facilities offering cutting edge resolution is however limited, due to (i) the design complexity of an optimized device able to reach a resolution in the order of ≈ 10 μm and (ii) limitations in available neutron flux. Here we propose a simple addition, based on a Fibre Optics Taper (FOT), that can be easily attached to an already existing scintillator-camera imaging detector in order to efficiently increase its spatial resolution and hence boost the capability of an instrument into high resolution applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatially resolved time-of-flight neutron imaging using a scintillator CMOS-camera detector with kHz time resolution

Robin Woracek, Mark Krzyzagorski, Henning Markötter, Peter M. Kadletz, Nikolay Kardjilov, Ingo Manke, and André Hilger
Opt. Express 27(18) 26218-26228 (2019)

Ultra-high-speed indirect x-ray imaging system with versatile spatiotemporal sampling capabilities

Emilio M. Escauriza, Margie P. Olbinado, Michael E. Rutherford, David J. Chapman, John C. Z. Jonsson, Alexander Rack, and Daniel E. Eakins
Appl. Opt. 57(18) 5004-5010 (2018)

What comes NeXT? – High-Speed Neutron Tomography at ILL

Christian Tötzke, Nikolay Kardjilov, Nicolas Lenoir, Ingo Manke, Sascha E. Oswald, and Alessandro Tengattini
Opt. Express 27(20) 28640-28648 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
    [Crossref]
  2. E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
    [Crossref]
  3. D. Penumadu, Material Science and Engineering with Neutron Imaging (SpringerUS, 2009), pp. 209–227.
  4. M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
    [Crossref]
  5. A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
    [Crossref]
  6. D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
    [Crossref]
  7. N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
    [Crossref]
  8. P. Trtik and E. H. Lehmann, “Progress in high-resolution neutron imaging at the paul scherrer institut-the neutron microscope project,” J. Phys.: Conf. Series 746, 012004 (2016).
  9. E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
    [Crossref]
  10. E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
    [Crossref]
  11. N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
    [Crossref]
  12. D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
    [Crossref]
  13. A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
    [Crossref]
  14. D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
    [Crossref]
  15. A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
    [Crossref]
  16. P. Trtik and E. H. Lehmann, “Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging,” Nuclear Instrum. Methods Phys. Res. Section A 788, 67–70 (2015).
    [Crossref]
  17. E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
    [Crossref]
  18. A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
    [Crossref]
  19. C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
    [Crossref] [PubMed]

2017 (1)

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

2016 (1)

P. Trtik and E. H. Lehmann, “Progress in high-resolution neutron imaging at the paul scherrer institut-the neutron microscope project,” J. Phys.: Conf. Series 746, 012004 (2016).

2015 (3)

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

P. Trtik and E. H. Lehmann, “Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging,” Nuclear Instrum. Methods Phys. Res. Section A 788, 67–70 (2015).
[Crossref]

2011 (2)

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

2009 (3)

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

2008 (2)

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
[Crossref]

2007 (2)

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

2005 (3)

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

2001 (1)

E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
[Crossref]

Arif, M.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

Baltic, E.

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

Banhart, J.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Boillat, P.

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

Calzada, E.

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

Carminati, A.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Cook, J.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

David, C.

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

Dawson, M.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

Deschler-Erb, E.

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

Faenov, A.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Feller, W.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Frei, G.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

Fukuda, Y.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Gruenauer, F.

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

Grünzweig, C.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

Hartmann, S.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

Hilger, A.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Huffman, P.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

Hull, J.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Hussey, D.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

Hussey, D. S.

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

Iikura, H.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Jacobson, D.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

Jacobson, D. L.

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

Josic, L.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

Kaestner, A.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
[Crossref]

Kando, M.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Kardjilov, N.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Kato, Y.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Kodama, R.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Kramer, D.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Krist, T.

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Kühne, G.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

LaManna, J. M.

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

Lehmann, E.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
[Crossref]

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
[Crossref]

Lehmann, E. H.

P. Trtik and E. H. Lehmann, “Progress in high-resolution neutron imaging at the paul scherrer institut-the neutron microscope project,” J. Phys.: Conf. Series 746, 012004 (2016).

P. Trtik and E. H. Lehmann, “Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging,” Nuclear Instrum. Methods Phys. Res. Section A 788, 67–70 (2015).
[Crossref]

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

Manke, I.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Mannes, D.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Matsubayashi, M.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

McPhate, J.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Meissner, M.

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Morgano, M.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Mühlbauer, M.

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

Nojima, T.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Peetermans, S.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Penumadu, D.

D. Penumadu, Material Science and Engineering with Neutron Imaging (SpringerUS, 2009), pp. 209–227.

Pikuz, T.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Sakai, T.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Scherer, G. G.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Schillinger, B.

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

Schmid, F.

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

Schulz, M.

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

Shimoi, R.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Shinohara, K.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Shiozawa, M.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Siegmund, O.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Soares, M.

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

Stampanoni, M.

A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
[Crossref]

Strobl, M.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Treimer, W.

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Tremsin, A.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Trtik, P.

P. Trtik and E. H. Lehmann, “Progress in high-resolution neutron imaging at the paul scherrer institut-the neutron microscope project,” J. Phys.: Conf. Series 746, 012004 (2016).

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

P. Trtik and E. H. Lehmann, “Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging,” Nuclear Instrum. Methods Phys. Res. Section A 788, 67–70 (2015).
[Crossref]

Vallerga, J.

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

Vontobel, P.

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
[Crossref]

Wiezel, L.

E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
[Crossref]

Williams, R.

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

Williams, S.

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

Wokaun, A.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Yasuda, R.

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

Zarebanadkouki, M.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Zhang, J.

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

Adv. Water Resources (1)

A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image processing in porous media research,” Adv. Water Resources 31, 1174–1187 (2008). Quantitative links between porous media structures and flow behavior across scales.
[Crossref]

Electrochimica Acta (1)

D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G. G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging,” Electrochimica Acta 50, 2603–2614 (2005).
[Crossref]

High Power Laser Sci. Eng. (1)

A. Faenov, M. Matsubayashi, T. Pikuz, Y. Fukuda, M. Kando, R. Yasuda, H. Iikura, T. Nojima, T. Sakai, M. Shiozawa, R. Kodama, and Y. Kato, “Using lif crystals for high-performance neutron imaging with micron-scale resolution,” High Power Laser Sci. Eng. 3, e27 (2015).
[Crossref]

J. Phys.: Conf. Series (1)

P. Trtik and E. H. Lehmann, “Progress in high-resolution neutron imaging at the paul scherrer institut-the neutron microscope project,” J. Phys.: Conf. Series 746, 012004 (2016).

Journal of Physics D: Applied Physics (1)

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” Journal of Physics D: Applied Physics 42, 243001 (2009).
[Crossref]

Nat. Phys. (1)

N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, and J. Banhart, “Three-dimensional imaging of magnetic fields with polarized neutrons,” Nat. Phys. 4, 399 (2008).
[Crossref]

Nondestructive Testing Evaluation (1)

E. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility neutra at sinq and its potential for use as european reference facility,” Nondestructive Testing Evaluation 16, 191–202 (2001).
[Crossref]

Nuclear Instrum. Methods Phys. Res. Section A (8)

A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, and E. Lehmann, “The icon beamline–a facility for cold neutron imaging at sinq,” Nuclear Instrum. Methods Phys. Res. Section A 659, 387–393 (2011).
[Crossref]

P. Trtik and E. H. Lehmann, “Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging,” Nuclear Instrum. Methods Phys. Res. Section A 788, 67–70 (2015).
[Crossref]

E. Lehmann, G. Frei, G. Kühne, and P. Boillat, “The micro-setup for neutron imaging: A major step forward to improve the spatial resolution,” Nuclear Instrum. Methods Phys. Res. Section A 576, 389–396 (2007).
[Crossref]

E. Calzada, F. Gruenauer, M. Mühlbauer, B. Schillinger, and M. Schulz, “New design for the antares-ii facility for neutron imaging at frm ii,” Nuclear Instrum. Methods Phys. Res. Section A 605, 50–53 (2009).
[Crossref]

N. Kardjilov, A. Hilger, I. Manke, M. Strobl, M. Dawson, S. Williams, and J. Banhart, “Neutron tomography instrument conrad at hzb,” Nuclear Instrum. Methods Phys. Res. Section A 651, 47–52 (2011).
[Crossref]

D. Hussey, D. Jacobson, M. Arif, P. Huffman, R. Williams, and J. Cook, “New neutron imaging facility at the nist,” Nuclear Instrum. Methods Phys. Res. Section A 542, 9–15 (2005).
[Crossref]

A. Tremsin, J. McPhate, J. Vallerga, O. Siegmund, J. Hull, W. Feller, and E. Lehmann, “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting mcp detectors,” Nuclear Instrum. Methods Phys. Res. Section A 604, 140–143 (2009).
[Crossref]

D. S. Hussey, J. M. LaManna, E. Baltic, and D. L. Jacobson, “Neutron imaging detector with 2 micrometer spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators,” Nuclear Instrum. Methods Phys. Res. Section A 866, 9–12 (2017).
[Crossref]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (1)

E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, “Non-invasive studies of objects from cultural heritage,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, 68–75 (2005). Proceedings of the Fifth International Topical Meeting on Neutron Radiography.
[Crossref]

Physics Procedia (1)

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly neutron tomography of water transport into lupine roots,” Physics Procedia 69, 292–298 (2015). Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10) Grindelwald, Switzerland October 5–10, 2014.
[Crossref]

Rev. Sci. Instrum. (1)

C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, “Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems,” Rev. Sci. Instrum. 78, 053708 (2007).
[Crossref] [PubMed]

Other (1)

D. Penumadu, Material Science and Engineering with Neutron Imaging (SpringerUS, 2009), pp. 209–227.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the experimental arrangement. The taper is attached to the camera box in the place where standard scintillators are usually placed. The remaining setup is untouched. In the cut-out on the upper left, an image of the taper obtained with the neutron microscope objective using visible light. The black dots visible in this image are non-light-carrying fibres intentionally embedded in the matrix to suppress cross talk between adjacent fibres. They are too small to be resolved using standard neutron imaging systems.
Fig. 2
Fig. 2 Comparison between the micro-setup (left) and the FOT-setup (right). In both images, the same camera (Andor NEO, Andor, UK) was used. For reference, the size of the spokes at the outer edge of the inner ring of the test pattern is 25 μm.
Fig. 3
Fig. 3 High resolution neutron image of the test pattern taken at NEUTRA.
Fig. 4
Fig. 4 Comparison between the test patter image taken with the FOT and a 50 mm objective (left) and a 100 mm 2:1 zoom objective (right). All the other parameters of the experimental arrangement remained the same. The slight increase in resolution using the zoom lens is evident, pointing towards the scintillator being the bottleneck for the resolution in this configuration.
Fig. 5
Fig. 5 High resolution neutron image of the test pattern taken at the ICON beamline with a 10 μm-thick Gadox scintillator (left) and a 5 μm-thick 157Gd-enriched Gadox scintillator (right).

Tables (1)

Tables Icon

Table 1 Summary of the results of the measurements with the FOT for all the tested conditions with neutrons. The measurements were all performed with the Andor NEO camera.

Metrics