Abstract

Two-photon polymerization (TPP) processes have enabled the fabrication of advanced and functional microstructures. However, most TPP platforms are bulky and require the use of expensive femtosecond lasers. Here, we propose an inexpensive and compact alternative to TPP by adapting an endoscopic imaging system for single-photon three-dimensional microfabrication. The wavefront of a visible continuous-wave laser beam is shaped so that it focuses into a photoresist through a 5 cm long ultra-thin multimode optical fiber (∅70 μm, NA 0.64). Using this device, we show that single-photon polymerization can be confined to the phase-controlled focal spot thanks to the non-linearity of the photoresist, likely due to oxygen radical scavenging. Thus, by exploiting this non-linearity with a specific overcuring method we demonstrate single-photon three-dimensional fabrication of solid and hollow microstructures through a multimode fiber with a 1.0-μm lateral and 21.5-μm axial printing resolution. This opens up new possibilities for advanced and functional microfabrication through endoscopic probes with inexpensive laser sources.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional microfabrication through a multimode optical fiber

Edgar E. Morales-Delgado, Loic Urio, Donald B. Conkey, Nicolino Stasio, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 7031-7045 (2017)

Three-dimensional microfabrication with two-photon-absorbed photopolymerization

Shoji Maruo, Osamu Nakamura, and Satoshi Kawata
Opt. Lett. 22(2) 132-134 (1997)

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

References

  • View by:
  • |
  • |
  • |

  1. M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
    [Crossref]
  2. B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
    [Crossref]
  3. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
    [Crossref] [PubMed]
  4. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Rev. 7, 22–44 (2012).
    [Crossref]
  5. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
    [Crossref] [PubMed]
  6. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, Fundamentals, Technology, and Applications (William Andrew, 2015).
  7. J. T. Fourkas and J. S. Petersen, “2-Colour photolithography,” Phys. Chem. Chem. Phys. 16, 8731–8750 (2014).
    [Crossref] [PubMed]
  8. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
    [Crossref]
  9. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref] [PubMed]
  10. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
    [Crossref]
  11. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
    [Crossref]
  12. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
    [Crossref] [PubMed]
  13. J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
    [Crossref] [PubMed]
  14. H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 169–273.
    [Crossref]
  15. J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
    [Crossref]
  16. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
    [Crossref] [PubMed]
  17. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity:the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [Crossref]
  18. H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
    [Crossref]
  19. P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
    [Crossref] [PubMed]
  20. M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
    [Crossref] [PubMed]
  21. D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
    [Crossref]
  22. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656 (2000).
    [Crossref]
  23. M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
    [Crossref]
  24. Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
    [Crossref]
  25. J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21, 26244–26260 (2013).
    [Crossref] [PubMed]
  26. G. Odian, Principles of Polymerization (John Wiley & Sons, 2004).
    [Crossref]
  27. J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
    [Crossref] [PubMed]
  28. D. Loterie, S. A. Goorden, D. Psaltis, and C. Moser, “Confocal microscopy through a multimode fiber using optical correlation,” Opt. Lett. 40, 5754–5757 (2015).
    [Crossref] [PubMed]
  29. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref]
  30. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [Crossref] [PubMed]
  31. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref] [PubMed]
  32. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
    [Crossref]
  33. M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
    [Crossref]
  34. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
    [Crossref] [PubMed]
  35. E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, “Three-dimensional microfabrication through a multimode optical fiber,” Opt. Express 25, 7031 (2017).
    [Crossref] [PubMed]
  36. J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
    [Crossref] [PubMed]
  37. S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
    [Crossref]
  38. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,.” Opt. Express 18, 10209–10221 (2010).
    [Crossref] [PubMed]
  39. P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. Eric Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
    [Crossref] [PubMed]
  40. S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors Actuators A: Phys. 100, 70–76 (2002).
    [Crossref]

2017 (2)

H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
[Crossref]

E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, “Three-dimensional microfabrication through a multimode optical fiber,” Opt. Express 25, 7031 (2017).
[Crossref] [PubMed]

2016 (4)

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. Eric Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref] [PubMed]

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

2015 (7)

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
[Crossref] [PubMed]

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

D. Loterie, S. A. Goorden, D. Psaltis, and C. Moser, “Confocal microscopy through a multimode fiber using optical correlation,” Opt. Lett. 40, 5754–5757 (2015).
[Crossref] [PubMed]

M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
[Crossref] [PubMed]

2014 (3)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
[Crossref] [PubMed]

J. T. Fourkas and J. S. Petersen, “2-Colour photolithography,” Phys. Chem. Chem. Phys. 16, 8731–8750 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (5)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Rev. 7, 22–44 (2012).
[Crossref]

2011 (1)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

2010 (3)

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,.” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

2009 (1)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

2008 (2)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

2007 (1)

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

2002 (1)

S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors Actuators A: Phys. 100, 70–76 (2002).
[Crossref]

2000 (2)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656 (2000).
[Crossref]

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity:the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
[Crossref]

1999 (1)

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

1997 (1)

Anderson, H. L.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

Arlt, J.

Baldacchini, T.

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, Fundamentals, Technology, and Applications (William Andrew, 2015).

Bartolo, P.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Benisty, H.

Bickauskaite, G.

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

Chen, K.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Chen, W.-Q.

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref]

Collins, H. A.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Denning, R. G.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

DeSimone, J. M.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref]

Do, M. T.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
[Crossref] [PubMed]

Dong, X.-Z.

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Duan, X.-M.

J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
[Crossref] [PubMed]

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Engelhardt, S.

S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

Eric Tai, M.

Ermoshkin, A.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Ermoshkin, N.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Fischer, J.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21, 26244–26260 (2013).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Rev. 7, 22–44 (2012).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Fourkas, J. T.

J. T. Fourkas and J. S. Petersen, “2-Colour photolithography,” Phys. Chem. Chem. Phys. 16, 8731–8750 (2014).
[Crossref] [PubMed]

Gadonas, R.

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Gillner, A.

S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Goorden, S. A.

Goy, A.

Greiner, M.

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

Horiyama, M.

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

Ikuta, K.

S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors Actuators A: Phys. 100, 70–76 (2002).
[Crossref]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656 (2000).
[Crossref]

In’T Veld, B. H.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Islam, R.

Janusziewicz, R.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Johnson, A. R.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Journet, B.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

Juodkazis, S.

Kadic, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

Kaschke, J.

Kawata, S.

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 169–273.
[Crossref]

Kelly, D.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Lai, N. D.

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
[Crossref] [PubMed]

Ledoux-Rak, I.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
[Crossref] [PubMed]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Li, Q.

Loterie, D.

Lukin, A.

Luong, M. H.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

Ma, R.

Malinauskas, M.

Malshe, A.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Maruo, S.

S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors Actuators A: Phys. 100, 70–76 (2002).
[Crossref]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656 (2000).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

Matsuo, S.

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

Mayer, F.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Misawa, H.

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

Miwa, M.

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

Morales-Delgado, E. E.

Moser, C.

Mueller, J. B.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21, 26244–26260 (2013).
[Crossref] [PubMed]

Mueller, P.

Nakamura, O.

Nguyen, D. T. T.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

Nguyen, T. T. N.

Odian, G.

G. Odian, Principles of Polymerization (John Wiley & Sons, 2004).
[Crossref]

Overmeyer, L.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Padgett, M. J.

Palermo, E. F.

H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Pawlicki, M.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

Petersen, J. S.

J. T. Fourkas and J. S. Petersen, “2-Colour photolithography,” Phys. Chem. Chem. Phys. 16, 8731–8750 (2014).
[Crossref] [PubMed]

Pinschmidt, R.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Prasad, P. N.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

Preiss, P. M.

Psaltis, D.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

Rispoli, M.

Rolland, J. P.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Samulski, E. T.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Schmidt, M.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Seitz, H.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
[Crossref]

Shirvanyants, D.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Stasio, N.

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Sun, H.-B.

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 169–273.
[Crossref]

Takeyasu, N.

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

Tanaka, T.

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Tempeler, J.

S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
[Crossref]

Thiel, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Tong, Q. C.

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

Tumbleston, J. R.

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Tyc, T.

M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
[Crossref]

Ullal, C. K.

H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
[Crossref]

Unterreiner, A.-N.

Urio, L.

Vaezi, M.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
[Crossref]

Vijayamohanan, H.

H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
[Crossref]

von Freymann, G.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Waller, E. H.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

Wegener, K.

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Wegener, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
[Crossref] [PubMed]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21, 26244–26260 (2013).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Rev. 7, 22–44 (2012).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Wehner, M.

S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
[Crossref]

Wolf, T. J. A.

Xing, J.-F.

J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
[Crossref] [PubMed]

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

Yang, S.

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Zheng, M.-L.

J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
[Crossref] [PubMed]

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

Zukauskas, A.

Zupancic, P.

Adv. Mater. (1)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,.” Adv. Mater. 26, 6566–6571 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3, 1488–1507 (2015).
[Crossref]

Angewandte Chemie. Int. edition Engl. (1)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angewandte Chemie. Int. edition Engl. 48, 3244–3266 (2008).
[Crossref]

Appl. Phys. Lett. (4)

J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett. 90, 131106 (2007).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656 (2000).
[Crossref]

Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108, 183104 (2016).
[Crossref]

Chem. Mater. (1)

H. Vijayamohanan, E. F. Palermo, and C. K. Ullal, “Spirothiopyran-Based Reversibly Saturable Photoresist,” Chem. Mater. 29, 4754–4760 (2017).
[Crossref]

Chem. Rev. (1)

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J.-F. Xing, M.-L. Zheng, and X.-M. Duan, “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chem. Soc. Rev. 44, 5031–5039 (2015).
[Crossref] [PubMed]

CIRP Ann. (1)

B. H. In’T Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, “Micro additive manufacturing using ultra short laser pulses,” CIRP Ann. 64, 701–724 (2015).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2012).
[Crossref]

J. Appl. Phys. (1)

D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, and N. D. Lai, “One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect,” J. Appl. Phys. 119, 013101 (2016).
[Crossref]

JLMN. (1)

S. Engelhardt, J. Tempeler, A. Gillner, and M. Wehner, “The voxel onset time as a method for the evaluation of two photon lithography,” JLMN. 8, 230–233 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Horiyama, H.-B. Sun, M. Miwa, S. Matsuo, and H. Misawa, “Three-Dimensional Microstructures Created by Laser Microfabrication Technology,” Jpn. J. Appl. Phys. 38, L212–L215 (1999).
[Crossref]

Laser & Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Rev. 7, 22–44 (2012).
[Crossref]

Nat. Commun. (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref]

Nat. Photon (1)

M. Plöschner, T. Tyc, and T. Cižmár, “Seeing through chaos in multimode fibres,” Nat. Photon 9, 529–535 (2015).
[Crossref]

New J. Phys. (1)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Opt. Express (7)

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,.” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. Eric Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref] [PubMed]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
[Crossref] [PubMed]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21, 26244–26260 (2013).
[Crossref] [PubMed]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
[Crossref] [PubMed]

E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, “Three-dimensional microfabrication through a multimode optical fiber,” Opt. Express 25, 7031 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

J. T. Fourkas and J. S. Petersen, “2-Colour photolithography,” Phys. Chem. Chem. Phys. 16, 8731–8750 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Science (1)

J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Additive manufacturing. Continuous liquid interface production of 3D objects,.” Science 347, 1349–1352 (2015).
[Crossref] [PubMed]

Science. (2)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science. 328, 337–339 (2010).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science. 324, 913–917 (2009).
[Crossref] [PubMed]

Sensors Actuators A: Phys. (1)

S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors Actuators A: Phys. 100, 70–76 (2002).
[Crossref]

Other (3)

G. Odian, Principles of Polymerization (John Wiley & Sons, 2004).
[Crossref]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 169–273.
[Crossref]

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, Fundamentals, Technology, and Applications (William Andrew, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup for the calibration of the multimode fiber (MMF) prior to each microfabrication experiment. The MMF transmission matrix is determined by feeding a series of independent plane waves to its proximal side using wavefront shaping, the MMF’s response to these inputs is measured on the distal side with off-axis holography. (b) Experimental setup for single-photon micro-additive manufacturing through the calibrated MMF. Following the calibration, the MMF distal tip is dipped into a droplet of photoresist and three-dimensional microstructures are built by digitally focusing and scanning CW light through the MMF. (c) Close-up view of Fig. 1(b) for the definition of the build volume under the MMF distal tip and the position of the microtube printed through the system as discussed in section 3.2 (d) Experimental measurement of the uniformity of light focusing through the MMF over the build volume defined in Fig. 1(c).
Fig. 2
Fig. 2 (a) Polymerization threshold power of a single polymer spot versus the spot exposure time, the dashed lines are isodose lines, the parametric space for efficient printing of three-dimensional microstructures is also depicted in gray. (b) Absorption spectrum of camphorquinone (CQ) in C6H12 (l = 0.4 cm) (c) Simulation of the beam propagation and absorption within the photoresist. The beam is focused 50 μm below the MMF.
Fig. 3
Fig. 3 (a) Lateral PSF measured through the MMF in the focal plane (b) Axial PSF measured through the MMF (c) Fit of the data of Fig. 3(a) and experimental lateral overlapping of the voxels during 3D printing with the computed cumulative intensity (d) Fit of the data of Fig. 3(b) and experimental axial overlapping of the voxels during 3D printing with the computed cumulative intensity (e) SEM image of a non-optimal printing of a micro-hollow tube through the MMF via single-photon photopolymerization (0.1s exposure time per spot, 159±2 nW/spot). The axis of the microtube was printed orthogonally to the MMF optical axis, the microstructure fell aside during development revealing the tube’s cross-section. The arrows indicate the scanning direction for building the microstructure. (f) SEM image of a micro-hollow tube printed through the MMF via single-photon photopolymerization (0.06s exposure time per spot, 208±2 nW/spot).
Fig. 4
Fig. 4 (a) Lateral printing resolution of our fiber-based single-photon micro-additive manufacturing device. Series of lines are printed with a decreasing pitch to determine the lateral printing resolution using Abbe’s criterion. The black dots are data points extracted from the DIC images and the smooth lines are cubic interpolant fits. (b) SEM top view of the smallest axial separation achieved between two solid lines. The model structure is the same as in Fig. 3(e) i.e. a micro-hollow tube of respectively 21.5μm and 31.5μm inner and outer diameter. (0.08s exposure time per spot, 197±2 nW/spot). The microtube fell aside during development. The slight overpolymerization of the structure results in a narrower hollow tube than designed. (c) SEM perspective view of an axially non-resolved hollow microtube. The model parameters are ∅in = 7.5μm, ∅out = 15μm, length = 10μm. (0.051s exposure time per spot, 149±1 nW/spot)
Fig. 5
Fig. 5 (a) Experimental setup for time-resolved measurement of the photopolymerization threshold. Light is focused through the MMF into a droplet of photoresist, and the resulting focused spot is imaged on a camera as photopolymerization occurs. MOD: single-mode fiber, PWM: power-meter, BS: non-polarizing beam-splitter, SLM: spatial light modulator, L1: lens, (f=175 mm), M:mirror, F: filtering diaphragm, λ/4: quarter wave-plate, OBJ: microscope objective (NA 0.8, 100x, Zeiss), MMF: multimode optical fiber (GOF85, NA 0.64, ∅70 μm, Schott), CAM:camera (b) Time-resolved measurement of the photopolymerization threshold for a spot power of 352 ± 3nW. The FWHM of the laser spot generated through the MMF is plotted over time (in blue, see left vertical axis), as well as the relative integrated power on the camera (in orange, see right vertical axis).

Metrics