Abstract

Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore’s law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make optical components, such as lenses, based on metasurfaces. Using a scalable metasurface layout compression algorithm that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we show the design and fabrication of metasurface lenses (metalenses) with extremely large areas, up to centimeters in diameter and beyond. Using a single two-centimeter diameter near-infrared metalens less than a micron thick fabricated in this way, we experimentally implement the ideal thin lens equation, while demonstrating high-quality imaging and diffraction-limited focusing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Varifocal zoom imaging with large area focal length adjustable metalenses

Shane Colburn, Alan Zhan, and Arka Majumdar
Optica 5(7) 825-831 (2018)

Graphene aperture-based metalens for dynamic focusing of terahertz waves

Pei Ding, Yan Li, Li Shao, Ximin Tian, Junqiao Wang, and Chunzhen Fan
Opt. Express 26(21) 28038-28050 (2018)

Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer

Ting Hu, Chih-Kuo Tseng, Yuan Hsing Fu, Zhengji Xu, Yuan Dong, Shijie Wang, Keng Heng Lai, Vladimir Bliznetsov, Shiyang Zhu, Qunying Lin, and Yuandong Gu
Opt. Express 26(15) 19548-19554 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  4. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18(12), 12606–12614 (2010).
    [Crossref] [PubMed]
  5. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [Crossref]
  6. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  7. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  8. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
    [Crossref] [PubMed]
  9. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  10. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  11. S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
    [Crossref] [PubMed]
  12. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017), doi:.
    [Crossref] [PubMed]
  13. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref] [PubMed]
  14. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large Area Electrically Tunable Lenses Based on Metasurfaces and Dielectric Elastomer Actuators,” http://arxiv.org/abs/1708.01972 .
  15. E. Hecht, Optics, Global Edition (Pearson, 2016).
  16. W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
    [Crossref] [PubMed]
  17. S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
    [Crossref] [PubMed]
  18. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  19. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).
  20. C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
    [Crossref]
  21. T. T. Saito, “Machining of optics: an introduction,” Appl. Opt. 14(8), 1773–1776 (1975).
    [Crossref] [PubMed]
  22. W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological (MR) Jet Finishing Technology,” in Fluids Engineering (2004).
  23. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons, 2011).
  24. M. Schaub, J. Schwiegerling, E. Fest, R. Hamilton Shepard, and A. Symmons, Molded Optics: Design and Manufacture (CRC, 2016).
  25. G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics (Basel) 38(8), 114–117 (1965).
  26. C. Mack, “The Multiple Lives of Moore’s Law,” IEEE Spectr. 52(4), 31 (2015).
    [Crossref]
  27. J. H. Bruning, “Optical lithography: 40 years and holding,” in Optical Microlithography XX (2007).
  28. “Technology Node,” https://en.wikichip.org/w/index.php?title=technology_node&oldid=58571 , date of access: Oct. 10, 2017.
  29. A. Fletcher, Profile of the Worldwide Semiconductor Industry - Market Prospects to 1997: Market Prospects to 1997 (Elsevier, 2013).
  30. B. Fay, “Advanced optical lithography development, from UV to EUV,” Microelectron. Eng. 61–62, 11–24 (2002).
    [Crossref]
  31. K. Bergmann, L. Juschkin, and R. Poprawe, “Extreme Ultraviolet Lithography,” in Nanotechnology (Wiley, 2010).

2017 (3)

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017), doi:.
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

2016 (3)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

2015 (5)

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

C. Mack, “The Multiple Lives of Moore’s Law,” IEEE Spectr. 52(4), 31 (2015).
[Crossref]

2014 (3)

P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2012 (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

2002 (1)

B. Fay, “Advanced optical lithography development, from UV to EUV,” Microelectron. Eng. 61–62, 11–24 (2002).
[Crossref]

1975 (1)

1965 (1)

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics (Basel) 38(8), 114–117 (1965).

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alu, A.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Bose, S.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Byren, R.

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017), doi:.
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Chase, C.

Chen, J.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Chen, R. T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Chen, W.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

Chung, C.-J.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Devlin, R.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Dodds, R. K.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Fay, B.

B. Fay, “Advanced optical lithography development, from UV to EUV,” Microelectron. Eng. 61–62, 11–24 (2002).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Gabay, I.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gopalan, P.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Hung Chu, C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Idrobo, J.-C.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Jang, D.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Jay Guo, L.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

Jin, L.

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

Kagan, C. R.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Karagodsky, V.

Karnik, R.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Khorasaninejad, M.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017), doi:.
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, M.-H.

Kong, J.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Laoui, T.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Li, Q.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Li, W.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Lin, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Ling, T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Lu, F.

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Mack, C.

C. Mack, “The Multiple Lives of Moore’s Law,” IEEE Spectr. 52(4), 31 (2015).
[Crossref]

Mansuripur, T.

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Moore, G. E.

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics (Basel) 38(8), 114–117 (1965).

Murray, C. B.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

O’Hern, S. C.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ok, J. G.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Pan, Z.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Rousso, D.

Saito, T. T.

Sedgwick, F. G.

Shalaev, V. M.

She, A.

Shkunov, V. V.

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Song, Y.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

Stewart, J. L.

Strohkendl, F.

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Subbaraman, H.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Troccoli, M.

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Tymchenko, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Wang, X.

West, P. R.

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Wu, Y.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Ye, X.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Yu, N.

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zakharenkov, Y. A.

Zhang, C.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

Zhang, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Appl. Opt. (1)

Electronics (Basel) (1)

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics (Basel) 38(8), 114–117 (1965).

IEEE Spectr. (1)

C. Mack, “The Multiple Lives of Moore’s Law,” IEEE Spectr. 52(4), 31 (2015).
[Crossref]

J. Mater. Chem. (1)

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. Jay Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. 4, 5133–5153 (2016).

Microelectron. Eng. (1)

B. Fay, “Advanced optical lithography development, from UV to EUV,” Microelectron. Eng. 61–62, 11–24 (2002).
[Crossref]

Nano Lett. (3)

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, “Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene,” Nano Lett. 15(5), 3254–3260 (2015).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Opt. Express (3)

Optica (1)

Science (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017), doi:.
[Crossref] [PubMed]

Other (10)

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large Area Electrically Tunable Lenses Based on Metasurfaces and Dielectric Elastomer Actuators,” http://arxiv.org/abs/1708.01972 .

E. Hecht, Optics, Global Edition (Pearson, 2016).

C. Zhang, Q. Li, L. Jin, X. Chen, and L. Jay Guo, “Printed Large-area Flat Optical Component: Metasurfaces for Cylindrical Vector Beam Generation,” in Conference on Lasers and Electro-Optics (2017).
[Crossref]

K. Bergmann, L. Juschkin, and R. Poprawe, “Extreme Ultraviolet Lithography,” in Nanotechnology (Wiley, 2010).

J. H. Bruning, “Optical lithography: 40 years and holding,” in Optical Microlithography XX (2007).

“Technology Node,” https://en.wikichip.org/w/index.php?title=technology_node&oldid=58571 , date of access: Oct. 10, 2017.

A. Fletcher, Profile of the Worldwide Semiconductor Industry - Market Prospects to 1997: Market Prospects to 1997 (Elsevier, 2013).

W. I. Kordonski, A. B. Shorey, and M. Tricard, “Magnetorheological (MR) Jet Finishing Technology,” in Fluids Engineering (2004).

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons, 2011).

M. Schaub, J. Schwiegerling, E. Fest, R. Hamilton Shepard, and A. Symmons, Molded Optics: Design and Manufacture (CRC, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Metasurface lens design. (a) A schematic shows a metasurface lens (metalens) designed to focus light of normal incidence, where D is diameter and f is focal length. The phase profile, φ, is implemented by a dense array of microscopic meta-elements, made of amorphous silicon cylindrical posts, supported by a SiO2 substrate. (b) A range of diameters of meta-element is used and their corresponding phase response (blue) and transmittance (red) are plotted in the graph. (c) The library and core algorithm of METAC are shown. The library is generated by using several layers to represent increasingly doubled copies of a primitive structure. At each radial position, the core algorithm then efficiently assembles appropriate library elements (e.g., references to levels 3, 4, and 5) to create the desired structure, forming a ring. (d) Due to the extremely large number of meta-elements required to comprise a large area metalens, a metasurface data compression algorithm, which we call METAC, was developed to generate manageable file sizes of metalens designs. Four methods were compared: uncompressed, EightFold (design is divided into copies of eighths), METAC, and METAC16 (maximum number of levels is restricted to 16, for better compatibility with existing software). File size is plotted as a function of device diameter. (e) The scaling order, b, of the file size for each method is plotted. Error bars represents one standard deviation. Methods with b closer to 2 indicate file size scaling with device area, while those with b closer to 1 indicates scaling with device diameter.
Fig. 2
Fig. 2 A schematic diagram showing the production of metalenses at low cost and with high yield using existing photolithographic stepper technology. Here a wafer substrate is first deposited with the appropriate film stack, comprised of the metalens material (amorphous (a)-Si), photoresist (SPR700-1.0), and contrast enhancement material (CEM). The pattern of the metalens, which is contained in the reticle, is then projected by the stepper, and replicated rapidly over the face of the wafer by repeatedly exposing and incrementally stepping the wafer position. Throughputs as high as hundreds of wafers per hour (wph) can be achieved. Then the pattern is etched into the a-Si, forming the metalens. Finally, after any residual photoresist is removed, the wafer can be diced into separate individual metalens devices. A photo of fabricated metalens (upper right), 2-cm in diameter, using this methodology is shown in comparison to a ruler. A SEM of the metalens center (center right) shows the microscopic posts comprising the metalens. Scale bar: 2 µm.
Fig. 3
Fig. 3 Flatness requirements. (a) As the metalens size increases, the flatness over the device surface becomes increasingly relevant. The flatness requirements were studied by computer simulations of metalenses (diameter: 2 cm, focal length: 50 mm, design wavelength: 1550 nm), in which the surface curvature was varied (spatial period ranging from 1 to 100 mm, and perturbation amplitude from 0 to 200 μm). The intensity of the optical field is shown. The metalens is situated at the bottom of each plot, and the vertical (z) and horizontal (r) axes are the propagation direction and radial dimension, respectively. Each group of four columns on the left and right show the optical behavior for even (cosine) and odd (sine) spatial perturbations, respectively, with respect to the metalens center. Quality of focus is reduced for shorter spatial periods and higher perturbation amplitudes. In (b), the surface profile of the 4-inch wafer we used (including metalenses) was measured (using Toho FLX-2320-S) and the Fourier transform calculated in (c) to obtain the major contributions to spatial frequencies, which mainly occurred at Λ−1 < 0.02 mm−1 (or Λ > 20 mm). The inner and outer white circles denote Λ at 50 and 20 mm, respectively.
Fig. 4
Fig. 4 Focusing and imaging performance. (a) The thinness of the device allows for imaging setups very similar to the ideal thin lens equation, which was used to demonstrate imaging capabilities. (b) Image of focal spot with 7 mm gaussian illumination at λ = 1550 nm. (c) The measured modulation transfer function (MTF) from (b) is plotted with the theoretical diffraction-limited MTF. Error bars: standard deviation. (d) Chromatic focal shift as a function of the wavelength of illumination. The measured deviation of focal length from that of the design wavelength at 1550 nm (light blue dots, error bars: standard deviation) is plotted together with the linear fit (blue line). (e) Hyperspectral image of focal spot in the same configuration as (b) for λ = 1440-1590 nm in 10 nm increments linearly binned to RGB channels (center wavelengths λR = 1590, λG = 1515, and λB = 1480 nm). The spot, which is largely white, indicates little chromatic aberration, which can be attributed to the low NA (0.07). Horizontal and vertical line cuts at the RGB center wavelengths are also shown. Using the thin lens setup in (a), simple, single-lens imaging was demonstrated at λ = 1550 nm for (f) the Harvard university logo and (g) US Air Force 1951 resolution target, without any additional optical components.
Fig. 5
Fig. 5 FDTD simulations of the focal spot of a 2 cm diameter metalens: (a) Simulated distribution of the electric field intensity (normalized |E|2) of the focal spot. (b) The cross section of intensity profile at Y = 0 (white dashed line in (a)) from which the size of the focused beam can be determined. This simulation indicates that the focal spot size, i.e. the full beam waist at 1/e2 of the peak intensity, is 17.1 µm.
Fig. 6
Fig. 6 View of the center portion of an example metalens layout design generated by METAC. Inset: an even closer view of the center.
Fig. 7
Fig. 7 A schematic diagram showing the setup for characterization of the focal spot. A horizontal microscope and a camera are mounted on a motorized stage to scan the image the focal spot, which later can be 3D constructed to determine the focal length and the spot size of a metalens device.
Fig. 8
Fig. 8 Being an early enabler of metasurfaces, Moore’s law, which predicts the transistor areal density in computer chips to double every year, is driven in large by improvements in lithographic technology. The plot shows the state of lithographic technology, represented as technology node size (TNS, diamond symbols), as a function of year, where smaller TNSs indicate higher feature densities. Several important product landmarks utilizing these TNSs are labelled, and key leaps in TNS powered by new light sources are denoted by vertical stems with circles. These past developments will enable the possibility of large area, cost-efficient metasurfaces optical devices. The red dotted line denotes the 700 nm threshold (corresponding to red light), below which the TNS had already surpassed in the mid-1990s. The wavelengths of the visible spectrum corresponding to TNS are shown shaded from 400 to 700 nm. In general, subwavelength-sized features can be produced using TNSs with at least twice the feature density as compared to the wavelength of light. Subsequent improvements to TNS up to the present (blue shaded region) have enabled feature sizes much smaller than the wavelength of light, providing ways to create more complex, fine-featured meta-elements as well as alternative routes for effectively utilizing foundry equipment which would otherwise be viewed as obsolete.

Tables (1)

Tables Icon

Table 1 Design file size according to device diameter and comparison of METAC algorithm

Metrics