Abstract

In this work, the influence of induced losses on the saturable absorption by zinc nanoparticles photodeposited onto the core of an optical fiber end is reported. Samples with different losses were obtained by the photodeposition technique using a continuous wave laser at 1550 nm. The nonlinear absorption of the saturable absorber was characterized by the P-scan technique using a high-gain pulsed erbium-doped fiber amplifier. The results have demonstrated that for optical fibers with variable induced losses by deposited nanoparticles, the modulation depth increases proportionally based on the nonlinear absorption coefficient. With induced losses fixed at 3 dB, it was demonstrated that the modulation depth increased as a function of the optical power used in the photodeposition process. The saturation intensity of the saturable absorber presents small shifts for higher intensities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia
Opt. Express 21(5) 6509-6518 (2013)

Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber

H. Ahmad, C. S. J. Lee, M. A. Ismail, Z. A. Ali, S. A. Reduan, N. E. Ruslan, and S. W. Harun
Appl. Opt. 55(16) 4277-4281 (2016)

Optically controlled in-line graphene saturable absorber for the manipulation of pulsed fiber laser operation

Jinhwa Gene, Nam Hun Park, Hwanseong Jeong, Sun Young Choi, Fabian Rotermund, Dong-Il Yeom, and Byoung Yoon Kim
Opt. Express 24(19) 21301-21307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
    [Crossref]
  2. G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
    [Crossref]
  3. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
    [Crossref]
  4. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
    [Crossref]
  5. S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
    [Crossref]
  6. M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
    [Crossref]
  7. W. B. Cho, S. Y. Choi, J. W. Kim, D. Yeom, K. Kim, and F. Rotermund, “Solid-state laser mode-locking near 1.25 μm employing a carbon nanotube saturable absorber mirror,” J. Opt. Soc. Korea 15(1), 56–60 (2011).
    [Crossref]
  8. A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
    [Crossref]
  9. C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
    [Crossref]
  10. A. Martínez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2015).
    [Crossref]
  11. M. Oya, H. Kishikawa, N. Goto, and S. Yanagiya, “All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene,” Opt. Express 20(24), 27322–27330 (2012).
    [Crossref] [PubMed]
  12. H. Kuo and S. Hong, “Nanographene-based saturable absorbers for ultrafast fiber lasers,” J. Nanomater. 2014, 1–6 (2014).
  13. Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
    [Crossref]
  14. S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
    [Crossref]
  15. A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
    [Crossref]
  16. M. Pokrass, Z. Burshtein, R. Gvishi, and M. Natham, “Saturable absorption of multi-walled carbon nanotubes/hybrid-glass composites,” Opt. Mater. Express 2(6), 825–838 (2012).
    [Crossref]
  17. A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
    [Crossref]
  18. P. Zaca-Morán, R. Ramos-García, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and C. Felipe, “Saturable and two-photon absorption in zinc nanoparticles photodeposited onto the core of an optical fiber,” Opt. Express 23(14), 18721–18729 (2015).
    [Crossref] [PubMed]
  19. J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G.F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
    [Crossref] [PubMed]
  20. P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
    [Crossref]
  21. J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
    [Crossref]
  22. J. F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Physical Rev. B 60(7), 4763–4770 (1999).
    [Crossref]
  23. P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
    [Crossref]

2017 (1)

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

2015 (5)

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

A. Martínez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2015).
[Crossref]

P. Zaca-Morán, R. Ramos-García, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and C. Felipe, “Saturable and two-photon absorption in zinc nanoparticles photodeposited onto the core of an optical fiber,” Opt. Express 23(14), 18721–18729 (2015).
[Crossref] [PubMed]

2014 (4)

H. Kuo and S. Hong, “Nanographene-based saturable absorbers for ultrafast fiber lasers,” J. Nanomater. 2014, 1–6 (2014).

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

2013 (2)

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G.F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

2012 (4)

M. Oya, H. Kishikawa, N. Goto, and S. Yanagiya, “All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene,” Opt. Express 20(24), 27322–27330 (2012).
[Crossref] [PubMed]

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

M. Pokrass, Z. Burshtein, R. Gvishi, and M. Natham, “Saturable absorption of multi-walled carbon nanotubes/hybrid-glass composites,” Opt. Mater. Express 2(6), 825–838 (2012).
[Crossref]

2011 (1)

2010 (1)

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

2009 (1)

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

2008 (1)

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

2006 (1)

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

2005 (1)

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

1999 (1)

J. F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Physical Rev. B 60(7), 4763–4770 (1999).
[Crossref]

Ahmad, F.

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Ahmad, H

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Ahmad, H.

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Ahmed, M. H. M.

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Ali, N. M.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Al-Masoodi, A. H. H.

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Anyi, C. L.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Arof, H.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Ates, A.

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

Azooz, S. M.

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Babar, I. M.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Beltran-Pérez, G.

Bhadra, S. K.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Billard, F.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Bugajski, M.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Burshtein, Z.

Chávez, F.

Chen, Y. J.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Cho, S. B.

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

Cho, W. B.

Choi, S. Y.

Das, S.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Elmali, A.

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

Felipe, C.

Gee, S.

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

Goiz, O.

Gómez-Pavón, L. C.

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Gong, X. H.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Goto, N.

Gvishi, R.

Halder, A.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Hamida, B. A

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Harkati, C.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Harun, S.

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

Harun, S. W.

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Hasan, T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Hirlimann, C.

J. F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Physical Rev. B 60(7), 4763–4770 (1999).
[Crossref]

Hong, S.

H. Kuo and S. Hong, “Nanographene-based saturable absorbers for ultrafast fiber lasers,” J. Nanomater. 2014, 1–6 (2014).

Howe, R. C. T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Hu, G.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Huang, Y. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Ismail, M. F.

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Jasik, A.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Kasim, N.

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Kelleher, E. J. R.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Khan, S.

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Kim, D. Y.

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

Kim, J. W.

Kim, K.

Kishikawa, H.

Kosmala, M.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Kuo, H.

H. Kuo and S. Hong, “Nanographene-based saturable absorbers for ultrafast fiber lasers,” J. Nanomater. 2014, 1–6 (2014).

Kürüm, U.

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

Kuzin, E.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Lamarre, J. M.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Lami, J. F.

J. F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Physical Rev. B 60(7), 4763–4770 (1999).
[Crossref]

Lee, C. C.

C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Lequime, M.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Li, G.

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

Lin, Y. F.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Liu, J.

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

Lozano-Perera, G. J.

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

Luo, Z. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Manaf, M.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Martínez, A.

A. Martínez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2015).
[Crossref]

Martinu, L.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Mendoza, J. G.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Miller, J M

C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Munajat, Y.

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Muszalski, J.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Natham, M.

Ortega-Mendoza, J. G.

Oya, M.

Padilla-Martínez, J. P.

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

Park, C. S.

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

Paul, M.C.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Pérez Sánchez, G. F.

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Pérez-Sánchez, G. F.

Pérez-Sánchez, G.F.

Pierscinski, K.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Pokrass, M.

Rahman, A.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Ramos-García, R.

Roorda, S.

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Rotermund, F.

Runcorn, T. H.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Sabran, M. B. S.

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

Saleh, Z. S.

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Schibli, T. R.

C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

Song, H.

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

Sun, Z.

A. Martínez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2015).
[Crossref]

Talalaev, V. G.

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

Tan, Q. G.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

Tiu, Z. C.

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

Torres-Turiján, J.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Torrisi, F.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Woodward, R. I.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20052–20061 (2015).
[Crossref]

Yaglioglu, H. G.

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

Yanagiya, S.

Yang, K.

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

Yeom, D.

Yüksek, M.

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

Zaca-Morán, P.

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

P. Zaca-Morán, R. Ramos-García, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and C. Felipe, “Saturable and two-photon absorption in zinc nanoparticles photodeposited onto the core of an optical fiber,” Opt. Express 23(14), 18721–18729 (2015).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G.F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Zarei, A.

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

Zhao, S

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

Appl. Phys. B (2)

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, “Laser performance of Nd:LaB3O6 cleavage microchips passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 83, 195–201 (2006).
[Crossref]

C. C. Lee, J M Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer,” Appl. Phys. B 108, 129–135 (2012).
[Crossref]

IET Optoelectron. (2)

I. M. Babar, M. B. S. Sabran, S. W. Harun, H. Ahmad, M.C. Paul, A. Halder, S. Das, and S. K. Bhadra, “Q-switched thulium-ytterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber,” IET Optoelectron. 9(3), 131–135 (2014).
[Crossref]

A. Zarei, Z. C. Tiu, F. Ahmad, H. Ahmad, and S. Harun, “Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber,” IET Optoelectron. 9(2), 96–100 (2015).
[Crossref]

J. Appl. Phys. (2)

M. Yüksek, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Ates, “Nonlinear and saturable absorption characteristics of amorphous InSe thin films,” J. Appl. Phys. 107(3), 1–6 (2010).
[Crossref]

A. Jasik, J. Muszalski, K. Pierscinski, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 1–8 (2009).
[Crossref]

J. Nanomater. (1)

H. Kuo and S. Hong, “Nanographene-based saturable absorbers for ultrafast fiber lasers,” J. Nanomater. 2014, 1–6 (2014).

J. Opt. Soc. Korea (1)

Laser Physics (1)

P. Zaca-Morán, J. G. Ortega-Mendoza, G. J. Lozano-Perera, L. C. Gómez-Pavón, G. F. Pérez Sánchez, J. P. Padilla-Martínez, and C. Felipe, “Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber,” Laser Physics 27(10), 1051010 (2017).
[Crossref]

Microw. Opt. Technol. Lett. (2)

S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, “Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror,” Microw. Opt. Technol. Lett. 54(10), 2256–2261 (2012).
[Crossref]

A. H. H. Al-Masoodi, M. F. Ismail, F. Ahmad, N. Kasim, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber,” Microw. Opt. Technol. Lett. 56(8), 1770–1773 (2014).
[Crossref]

Nat. Photonics (1)

A. Martínez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2015).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Mendoza, F. Chávez, G. F. Pérez Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

G. Li, S Zhao, K. Yang, and J. Liu, “Control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber,” Opt. Quantum Electron. 37, 635–647 (2005).
[Crossref]

Optics Comm. (1)

J. M. Lamarre, F. Billard, C. Harkati, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Optics Comm. 281(2), 331–340 (2008).
[Crossref]

Optik (1)

S. M. Azooz, M. H. M. Ahmed, F. Ahmad, B. A Hamida, S. Khan, H Ahmad, and S. W. Harun, “Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber,” Optik 126, 2950–2954 (2015).
[Crossref]

Physical Rev. B (1)

J. F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Physical Rev. B 60(7), 4763–4770 (1999).
[Crossref]

Ukr. J. Phys. Opt. (1)

Z. S. Saleh, C. L. Anyi, A. Rahman, N. M. Ali, S. W. Harun, M. Manaf, and H. Arof, “Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation,” Ukr. J. Phys. Opt. 15(1), 24–29 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the photodeposition of ZnNPs onto the core of an optical fiber end.
Fig. 2
Fig. 2 Experimental setup to measure the nonlinear transmission of ZnNPs photodeposited onto the optical fiber end.
Fig. 3
Fig. 3 Nonlinear characterization of ZnNPs photodeposited onto the optical fiber end. Blue solid lines indicate a fit to the data.
Fig. 4
Fig. 4 (a) Curves fitting for nonlinear characterization of samples; (b) modulation depth and nonlinear susceptibility regarding induced losses on the samples.
Fig. 5
Fig. 5 Nonlinear characterization of samples B1 to B4 with losses fixed at 3 dB. Blue solid lines indicate a fit to the data.
Fig. 6
Fig. 6 (a) Curve fitting of nonlinear characterization corresponding to samples B1 to B4. (b) Modulation depth and nonlinear susceptibility as a function of input power. Losses are fixed at 3dB.

Tables (4)

Tables Icon

Table 1 Induced losses in the samples. The input laser power was fixed at 50 mW during the photodeposition process.

Tables Icon

Table 2 Values of the nonlinear absorption coefficient (β), third-order nonlinear susceptibility [Im(χ(3))], and modulation depth for samples with induced losses.

Tables Icon

Table 3 Induced losses of 50% (3 dB) in samples at different Pin in photodeposition.

Tables Icon

Table 4 Values of the nonlinear absorption coefficient, third-order nonlinear susceptibility, and modulation depth for samples B1–B4

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = exp [ ( α 0 + β I ) L ] ,
β ( I ) = β 1 + I / I sat ,
T = exp [ ( α 0 + β I 1 + I / I sat ) L ] .
Im ( χ 3 ) = λ ε 0 n 0 2 c α 0 4 π

Metrics